City of Scappoose, Oregon Public Works Department

Storm Drain System Master Plan

FINAL DRAFT

November 1998

in association with: Shaun Pigott Associates

STORM DRAIN SYSTEM MASTER PLAN

FINAL DRAFT

NOVEMBER 1998

Prepared for: City of Scappoose, Oregon Public Works Department 52432 SE 1st Street Scappoose, Oregon 97056

Prepared by:

KCM, Inc. 7080 SW Fir Loop Portland, Oregon 97223-8022 (503) 684-9097

in association with:

Shaun Pigott Associates Utility and Infrastructure Finance 1045 NW Bond Street, Suite 5 Bend, Oregon 97701 (541) 383-1960

KCM Project No. 2640064

CITY OF SCAPPOOSE STORM DRAIN SYSTEM MASTER PLAN TABLE OF CONTENTS

Title		Page No.				
EX	ECUT	IVES	UMMARY			
	Intr	oductic	ES-1			
	Des	cription	of the Storm Drainage System ES-1			
	Prol	blem A	reas / Capacity of the Storm Drainage System			
	Rec	Recommended Improvements FS-2				
	Fun	ding In	nprovements			
1.	INTRODUCTION					
	1.1	Backs	ground			
	1.2	Auth	orization1-1			
	1.3	Purpe	ose and Scope1-1			
	1.4	Repo	rt Organization1-2			
2.	STU	UDY A	REA			
	2.1	Study	/ Area2-1			
		2.1.1	Topography			
		2.1.2	Geology2-1			
		2.1.3	Climate			
		2.1.4	Vegetation2-2			
	2.2	Land	Use Patterns and Population2-2			
	2.3	FEMA	A Flood Insurance Status			
3.	EXI	EXISTING SYSTEM				
	3.1	Introd	Juction			
	3.2	Existi	ng System3-1			
	3.3	Existi	ng Problem Areas			
4.	SYS	STEM	EVALUATION AND ALTERNATIVES			
	4.1	Introd	duction			
	4.2	West	of Highway 30			
		4.2.1	On-Site Detention			
		4.2.2	Improvements to Scappoose-Vernonia Highway4-1			
		4.2.3	New Conveyance Systems for the 5th, 6th 7th Street Area			
		4.2.4	New Parallel Conveyance System4-2			
		4.2.5	Modification of Road Crossings			
	4.3	East o	of Highway 30			
		4.3.1	On-Site Detention			
		4.3.2	New Pipeline Conveyance Systems4-2			
		4.3.3	Continued and Expanded Use of Dry Wells			
		4.3.4	Add Capacity to the Jackson Creek System			

	4.4	Hydrologic Analysis	
		4.4.1 Rational Method	
		4.4.2 Runoff Coefficient and Land Use	
		4.4.3 Time of Concentration	
		4.4.4 Design Storm Frequency	
		4.4.5 Intensity Duration Frequency Curve	
4.5 Hydraulic Analysis		Hydraulic Analysis	
		4.5.1 Open Channel Flow - Manning's Formula	
		4.5.2 Open Channel Flow - FEMA HEC-2	
	4.6	Computations for Future Conditions4-6	
5.	MANAGEMENT MEASURES		
	5.1	troduction	
	5.2	Design Standards Review	
	5.3	Maintenance Issues	
	5.4	Riparian Corridor Protection	
	5.4	Legal/Liability Issues	
6.	FUI	JDING ALTERNATIVES	
	6.1	Overview	
	6.2	Summary	
	6.3	Basis for Stormwater Funding in Scappoose	
	6.4	Regulatory mandates and Proposed Service levels	
	6.5	Rate Methodology	

Revenue Forecast/Budget......6-6

APPENDICES

6.5 6.6

6.7

6.8

7.1 7.2

7.3

7.

- Α. Groundwater Discharge
- B. **Public Input**
- C. Portable Pumping Systems

RECOMMENDED PLAN

- D. **Project Background**
- E. South Scappoose Creek - Hydraulic Evaluation
- F. Storm Drainage System Inventory and Maintenance Budget
- G. Metro Title 3 Model Ordinance
- H. Equivalent Service Unit (ESU) Basis, Existing and Future
- I. Storm Drainage Utility Ordinance and Resolution
- Storm Drainage System Development Charge Ordinance and Resolution J.

LIST OF TABLES

No.	Title	Page No.
4-1	Runoff Coefficients for Storm Sewers	4-4
7-1	Project List	7-3

LIST OF FIGURES

No.	Title	After Page No
2-1	Vicinity	
2-2	Study Area	
2-3	Land Use	2-4
3-1	Existing System (A-F)	
7-1	Recommended Plan(A-F)	

EXECUTIVE SUMMARY

Scappoose Storm Drain System Master Plan

EXECUTIVE SUMMARY

INTRODUCTION

Recent periods of heavy rainfall, in combination with continued urban development in Scappoose, has demonstrated the City's need for a storm drain system master plan. The City recognized that development of a storm drain system master plan would identify existing drainage problems and solutions, would identify future requirements of the City and private development, and would allow identification of means and methods for funding storm drainage improvements. In February 1997, the City of Scappoose contracted with KCM, Inc. to develop a storm drain system master plan for the area within the City's urban growth boundary. The purpose of this plan is to determine long-term existing drainage structure adequacy for conveying existing storm flows and required structure size to minimize future flooding potential.

DESCRIPTION OF THE STORM DRAINAGE SYSTEM

The Scappoose study area is currently served by three primary systems for drainage: South Scappoose Creek, Jackson Creek, and dry wells.

South Scappoose Creek provides a major conveyance system for drainage service west of Highway 30. Jackson Creek provides the major conveyance system for the southern and eastern portions of the study area. Dry wells (stormwater discharge to the ground) provide the majority of drainage service in the northeast portion of the study area where soils are generally suitable.

PROBLEM AREAS / CAPACITY OF THE STORM DRAINAGE SYSTEM

Notable problem areas as reported by the public and City Staff included:

- extended periods of standing water in the Sunset Loop area during 1996 flood event,
- high water for extended periods (1-2 days) along Jackson Creek during 1996,
- lack of reliability of dry well systems in the north portion of the City,
- inadequate drainage along 5th, 6th and 7th Streets north of E.J. Smith Road,
- occasional flow over roadways along South Scappoose Creek outside of the main channel (E.J. Smith Road, J.P. West Road, E.M. Watts Road)
- general concerns were also stated regarding stormwater impacts of new development,
- Scappoose Drainage District also expressed concerns about the impacts of stormwater quantity and quality on their conveyance systems and facilities.

RECOMMENDED IMPROVEMENTS

Table ES.1 (Capital Improvement Plan) shows the improvements recommended over the 20year planning period.

The total cost of the CIP projects for the twenty-year period is \$7,288,000 (rounded to the nearest \$10,000). This includes the following projects.

Recommended Improvements - East Side of Highway 30

- West Lane Storm Drainage System New storm pipelines to serve existing developed northeast area that has unreliable or failing dry wells.
- Sawyer Street Storm Drainage System New storm pipelines to serve existing developed northeast area that has unreliable or failing dry wells.
- Columbia Avenue Storm Drainage System New storm pipeline to provide storm drainage service to new and existing development north and south of Columbia Avenue east of 6th Street.
- Elm Street Storm Drainage System New storm pipeline to provide storm drainage service to new and existing development north and south of Elm Street east of 4th Street.
- Vine Street Storm Drainage System New storm pipeline to provide storm drainage service to new and existing development north and south of Vine Street east of 4th Street.
- Crown Storm Line New storm pipeline to provide storm drainage service to area proposed for industrial development north of existing Crown Zellerbach Road.
- Airport Industrial Area New storm pipeline to provide storm drainage service for proposed development around the airport.
- Jackson Creek Temporary/mobile pumping units to divert excess flows from Jackson Creek to the Multnomah Channel during extreme flood events.

Recommended Improvements - West side of Highway 30

- 5th, 6th, 7th (Smith Road) New storm piping system to provide storm drainage service to existing development along 5th, 6th and 7th Streets north of Smith Road.
- 5th, 6th, 7th (Wheeler Road) New storm piping system to provide storm drainage service to
 existing development along 5th, 6th and 7th Streets south of Wheeler.
- JP West Storm Pipeline New storm pipeline to provide storm drainage service and prevent stormwater ponding in existing developed area south of JP West Road west of 1st Street.

Storm Drain System Master Plan ...

- Callahan-Dutch Canyon area New combined open channel/pipe conveyance system to provide storm drainage service for proposed development in the Callahan-Dutch Canyon area.
- Scappoose Creek Roadway and culvert improvements to prevent shallow flooding of JP West and EM Watts. Interchange improvements at Scappoose-Vernonia Highway to reduce flood levels in South Scappoose Creek.

FUNDING OF IMPROVEMENTS

Funding options were reviewed as part of the storm drain master planning process. Specific options included implementation of a stormwater utility rate and a stormwater system development charge.

 Equivalent Service Unit (ESU) – Based on measurements of mapped impervious areas (rooftops, driveways, etc.) for single family residential dwellings in Scappoose, one equivalent service unit is approximately 2,750 square feet.

> Current ESUs in Scappoose = 3,909 Remaining ESUs in Scappoose = 3,569 Total ESUs in Scappoose UGB = 7,478

- Stormwater Utility Rate Based on anticipated operating and maintenance costs for a stormwater utility in Scappoose, a monthly rate for each ESU is expected in the range of \$3.50 to \$4.00. This rate would support an annual budget in the range of \$160,000 to \$190,000.
- System Development Charge (SDC) Based on future development requirements and flow contributions to the identified capital projects, a SDC of \$500 per ESU has been estimated (development allocation \$1,740,000 / 3569 ESUs = \$487 per ESU).

Draft ordinances for both the stormwater utility and system development charge have been prepared.

Chapter 1 INTRODUCTION

Scappoose Storm Drain System Master Plan

CHAPTER 1. INTRODUCTION

1.1 BACKGROUND

Recent periods of heavy rainfall, in combination with continued urban development in Scappoose, has demonstrated the City's need for a storm drain system master plan. The City recognized that development of a storm drain system master plan would identify existing drainage problems and solutions, would identify future requirements of the City and private development, and would allow identification of means and methods for funding storm drainage improvements.

1.2 AUTHORIZATION

In February 1997, the City of Scappoose contracted with KCM, Inc. to develop a storm drain system master plan for the area within the City's urban growth boundary.

1.3 PURPOSE AND SCOPE

The purpose of this plan is to determine long-term existing drainage structure adequacy for conveying existing storm flows and required structure size to minimize future flooding potential. The scope of the project includes the following elements:

- Review existing information, including previous designs, survey information, drainage reports, and other data to support development of the storm drain system master plan.
- Prepare aerial-based topographic mapping for the City on 1"=100' scale and 2-foot contour intervals.
- Conduct analysis of the storm drainage system hydrology and hydraulics to address
 existing drainage problems in the study area and impacts of new development.
- Based on the data review and system analysis, identify measures for improving drainage and reducing the flooding within the study area.
- Develop and present alternatives to the City for drainage system improvements.
- Develop and present alternative funding methods to the City for implementation of improvements.
- · Document the analysis in a draft and final storm drain system master plan report.

Scappoose Storm Drain System Master Plan ...

1.4 REPORT ORGANIZATION

This report represents the City of Scappoose - Storm Drain System Master Plan - Draft Report. It consists of the following seven chapters:

- Introduction—Describing project background, authorization, purpose, scope, and report organization
- Study Area—Describing the study area's location, topography, climate, and land use.
- Existing Drainage System—Describing the components of the existing drainage system and reports of flooding.
- System Evaluation and Alternatives—Describing evaluation results and alternatives developed.
- Management Measures—Describing current and future requirements for nonstructural control measures.
- Funding Alternatives—Describing alternative funding methods.
- Recommended Plan—Describing the overall plan for structural and non-structural control measures.

This report includes appendices that provide supporting information on public input, groundwater discharge, hydraulic evaluation, project background and draft ordinances.

Scappoose Storm Drain System Master Plan

CHAPTER 2. STUDY AREA

2.1 STUDY AREA

2.1.1 Topography

The City of Scappoose is located along the Columbia River in Columbia County, approximately 20 miles northwest of Portland, and is shown in Figure 2-1. On the west side of Highway 30, the terrain is hilly with ground slopes predominantly ranging from 0 to 15 percent. Small areas within the urban growth boundary have slopes in excess of 30 percent. The milder 0 to 15 percent slopes are generally conducive to development of land for residential and light commercial uses. Land elevations around the City vary from approximately 10 feet near Jackson Creek to as high as 500 feet on the southern and western edges of the urban growth boundary (UGB), near the headwaters of Jackson Creek and South Scappoose Creek and tributaries. The lands east of U.S. Highway 30 are predominantly below 60 feet in elevation. For analysis purposes, the study area coincides with the UGB, as shown in Figure 2-2.

2.1.2 Geology

The geology of Scappoose is characterized by a variety of formations and deposits. According to the 1986 Soil Conservation Service Soil Survey of Columbia County, the soils east of Highway 30 are predominantly of the Sauvie-Rafton series. These soils are characterized as deep, nearly level, poorly drained and very poorly drained silt loams and silty clay loams formed in recent alluvial deposits. These soils are typical of the Jackson Creek area downstream of Highway 30 as well as most of South Scappoose floodplain area. In the northeast portion of the study area, Sifton-Mulnomah soils are present. These soils are characterized as deep, nearly level, somewhat excessively drained and well drained loams that formed in old gravelly alluvial deposits. These areas are generally consistent with the locations of existing City dry wells.

The soils west of Highway 30 are varied. The upper portions of the Jackson Creek basin are predominantly comprised of Cornelius-Cascade soils. These soils are typified as deep, gently sloping, to moderately steep, moderately well drained and somewhat poorly drained silt loams, that formed in silty materials. The upper portions of the South Scappoose Creek basin and Salt Creek (tributary to South Scappoose Creek) are comprised primarily of Goble series soils. These soils are moderately deep, gently sloping to moderately steep, moderately well drained silt loams that formed in silty materials.

2.1.3 Climate

The climate for the Scappoose area is characterized by mild winters and cool summers. The average January air temperature is about 38 degrees F and the average July temperature is about 66 degrees F. Temperature extremes range from the low 20's to high 80's. Rainfall occurs predominantly during the winter months, with an average of about 43 inches per year. Approximately 75 percent of this total falls in the six winter months from November through

April. Extreme months during the 26-year period of record (1951-1976) at Warren, included November 1973 (14.82"), January 1953 (13.19"), and December 1973 (12.95"). For the month of February 1996, Scappoose Public Works Department recorded approximately 12.6 inches.

2.1.4 Vegetation

Varieties of vegetation within the study area are depending on soil conditions and the degree of urbanization. Trees in the urbanized areas range from deciduous types, such as maple, oak and ash, to coniferous fir and a few pines. Most of the residential areas have lawns and varieties of shrubs. Vacant areas quickly revert to grasses and blackberries. Low lying areas along South Scappoose Creek and Jackson Creek are normally covered by blackberries and willow, cottonwood, maple and fir trees.

2.2 LAND USE PATTERNS AND POPULATION

Land use zoning in the City of Scappoose is comprised primarily of residential uses, with lesser amounts of land dedicated to commercial, institutional, open space and recreational uses. Land use boundaries are delineated in the City of Scappoose Comprehensive Plan adopted in April 1991. Zoning classifications and restrictions are identified in the City Zoning Ordinance. In 1991, the urban growth boundary encompassed approximately 1640 acres comprised of:

- general residential (214 acres/13%),
- suburban residential (830 acres/50%),
- mobile home residential (75 acres/5%),
- commercial (85 acres/5%),
- industrial, and (275 acres/17%),
- public/semi-public (160 acres/10%).

With expansions of the UGB since 1991, the UGB now encompasses approximately 2500 acres. Approximately 350 acres of the current UGB lies within the Scappoose Drainage District boundary. Figure 2-3 identifies the urban growth boundary and the land use boundaries within it.

The population of the City of Scappoose was 3,529 in 1990 and 4,130 in 1996. Population growth averaged 0.95 percent per year between 1980 and 1990 and 5.62 percent per year between 1970 and 1980. A 1995 analysis by the Center for Population research and Census (Portland State University) determined that the City average 2.96 residents per dwelling in 1995.

Columbia County, especially the City of Scappoose, has experienced recent growth due to its proximity to Portland and the availability of reasonably priced land. With the expansion of Highway 30 to four lanes and Portland area prices increasing, people are moving to lower priced rural settings with only a 25-minute commute to downtown Portland. It is also close to Hillsboro and Beaverton. The current population is estimated at approximately 4,700 people.

2.3 FEMA FLOOD INSURANCE STATUS

In 1968, the U.S. Congress passed the Flood Insurance Act which established a federal program enabling property owners to buy flood insurance at a reasonable cost (FEMA, 1980). In return,

communities carry out local floodplain management measures to protect lives and new construction from future flooding. The program is administered by the Federal Insurance Administration within the Federal Emergency Management Agency (FEMA).

A community qualifies for the program in two separate phases -- the Emergency and Regular Programs.

During the initial Emergency phase, limited amounts of flood insurance becomes available to local property owners. A community's efforts to reduce flood losses are general, in many cases guided only by preliminary flood data. The map FEMA provides the community at this stage is called a Flood Hazard Boundary Map. It outlines the flood-prone areas within the community. Subsidized rates are charged for all structures regardless of their flood risk.

Under the Regular Program, the full limits of flood insurance coverage become available locally. The premiums charged for new construction vary according to exposure to flood damage. A structure's exposure is based upon the elevation at its lowest floor above or below the "Base Flood Elevation". The community's floodplain management efforts become more comprehensive under the Regular Program where new buildings are elevated or flood-proofed above certain flood levels. These levels are derived from FEMA's detailed on-site engineering survey in the community. The community is issued a detailed map, called a Flood Insurance Rate Map, which shows flood elevations and risk zones used for insurance purposes.

To qualify for the flood insurance program, a community must: (1) require development permits for all proposed construction or other development in the community; and (2) review the permit to assure that sites are reasonably free from flooding. For its flood-prone areas, the community must also require: (1) proper anchoring of structures; (2) use of construction materials and methods that will minimize flood damage; (3) adequate drainage for new subdivisions; (4) the location and design of new or replacement utility systems to prevent flood loss; and (5) that all new construction and substantial improvements to existing structures in FEMA-identified flood-prone areas be elevated or flood-proofed to the level of the base flood.

The base flood is a term used to describe the level of flooding the program is geared to protect against. While sometimes referred to as the "100-year flood", it is more appropriately the flood having a 1 percent chance of being equaled or exceeded in any year.

The City of Scappoose presently participates in the regular phase of the Flood Insurance Program. (Date of entry into the Regular Program was August 16, 1988.) Products of the flood insurance study include flood profiles and maps for the portions of South Scappoose Creek within the Scappoose city limits. Flood profiles and maps for those portions of the Creek which lie outside of the city limits are included in the Flood Insurance Study prepared for Unincorporated Areas of Columbia County. In addition, flood hazard areas protected by levees, dikes or other structures are shown for much of the area within the UGB west of Highway 30 and below approximate elevation 24.0 (100-year), and below approximate elevation 30.0 (500-year). Columbia County is also a participant of the regular phase of the Flood Insurance Program (date of entry into the Regular Program was August 16, 1988).

For each creek, the studies define floodplains for the 100- and 500-year floods and a 100-year, 1foot floodway (the portion of the stream necessary to convey flow). To continue in the Flood Insurance Program, the City must require that all construction in the floodplain be elevated so Scappoose Storm Drain System Master Plan ...

the first floor is above the 100-year flood or be flood-proofed. Any construction in the floodway must be prohibited unless an engineering study can demonstrate the construction would not raise the 100-year flood elevation. In this Storm Drain Master System Plan for Scappoose, detailed hydrologic/hydraulic analyses were not performed to either verify or modify the current effective Flood Insurance Study.

Chapter 3 EXISTING SYSTEM

Scappoose Storm Drain System Master Plan

CHAPTER 3. EXISTING SYSTEM

3.1 INTRODUCTION

The Scappoose study area is currently served by three primary systems for drainage:

- South Scappoose Creek
- Jackson Creek
- Dry Wells

South Scappoose Creek provides a major conveyance system for drainage service west of Highway 30. Jackson Creek provides the major conveyance system for the southern and eastern portions of the study area. Dry wells (stormwater discharge to the ground) provide the majority of drainage service in the northeast portion of the study area, where soils are generally suitable. The existing storm drainage system is presented in Figures 3-1(A-F). These systems are further described in the following sections.

3.2 EXISTING SYSTEM

South Scappoose Creek

Being the primary corridor for stormwater conveyance on the west side of Highway 30, land development has historically discharged directly to the Creek with short, storm piping configurations with very localized service. The City currently has a policy requiring stormwater detention from new developments discharging into South Scappoose Creek. This policy has helped to limit stormwater quantity impacts on the main channel.

Lands within the City comprise a very small portion of the South Scappoose Creek drainage area. For example, at the Dutch Canyon Road crossing of South Scappoose Creek, the contributing watershed area is approximately 23.5 square miles of which 0.16 square miles (0.7%) comes from within the urban growth boundary. Further downstream at the J.P. West road crossing of South Scappoose Creek, the contributing watershed area is approximately 24.7 square miles of which 0.76 square miles (3.1%) comes from within the urban growth boundary. The existing flood insurance study for South Scappoose Creek has defined 10-, 50-, 100- and 500-year flood levels, as well as the floodway corridor.

Jackson Creek

Jackson Creek is a primary conveyance system in the southern and eastern portion of the study area. The headwaters of Jackson Creek originate outside of the urban growth boundary and are undeveloped. Under normal flow conditions, Jackson Creek flows east where it crosses under Highway 30 and the railroad tracks (near Johnson Crossing). From this point, upper Jackson Creek flows are diverted due south in a ditch system to Joy Creek where flow ultimately is conveyed to the Multnomah Channel and Columbia River. During high water stages on the Columbia River, the south diversion is closed, and Jackson Creek flows east and north where all flows are ultimately pumped out by Scappoose Drainage District's main pump station. Lower Jackson Creek cannot effectively convey all upstream storm flows for extended periods. Out of bank flooding was experienced along Jackson Creek during the February 1996 flood event. Adequate downstream capacity is available in Scappoose Drainage District's main pump station. With improvements to the pump impellers at the main pump station, the pump station is capable of conveying approximately 320 cubic feet per second (144,000 gallons per minute (gpm), 3 pumps at 38,000 gpm and 1 pump at 30,000 gpm).

Lands within the City comprise a very small portion of the Jackson Creek drainage area. For example, at the Highway 30 crossing of Jackson Creek, the contributing watershed area is approximately 3.0 square miles of which 0.10 square miles (3.3%) is within the current City urban growth boundary. Further downstream at the Columbia Avenue crossing of Jackson Creek, the contributing watershed area is approximately 4.9 square miles of which 0.62 square miles (12.7%) comes from within the urban growth boundary.

Dry wells

Areas in the northeast portion of the City currently discharge stormwater to the ground by way of dry wells. Dry wells can be an effective means of stormwater discharge, under certain conditions. Oregon Administrative Rules (OAR 340-44-050, see Appendix A) suggest that dry wells should only be considered when:

- surface discharging storm sewers are impractical
- they serve only residential areas
- · there are some means of closing or plugging in the event of a spill
- there are no domestic water supply wells within 500 feet

In addition, dry wells require more intense maintenance to operate reliably when needed, which can render them less effective.

Other systems

Other portions of the study area have no defined drainage system currently in place. This area generally is north of High School Way and east of 4th Street. Stormwater currently ponds on the ground and is gradually absorbed over time, however this is not a reliable long-term approach.

3.3 EXISTING PROBLEM AREAS

Early during the study process, a public meeting was held to discuss stormwater issues and specific drainage problem areas. Forms were provided to the public and the results are presented in Appendix B. Notable problem areas as reported by the public and City Staff included:

- extended periods of standing water in Sunset Loop area during 1996 flood event,
- high water for extended periods (1-2 days) along Jackson Creek during 1996,
- lack of reliability of dry well systems in the north portion of the City,
- inadequate drainage along 5th, 6th and 7th Streets north of E.J. Smith Road,

Scappoose Storm Drain System Master Plan ...

- occasional flow over roadways along South Scappoose Creek outside of main channel (E.J. Smith Road, J.P. West Road, E.M. Watts Road)
- · general concerns were also stated concerning stormwater impacts of new development,
- Scappoose Drainage District also expressed concerns about the impacts of stormwater quantity and quality on their conveyance systems and facilities

n

Chapter 4 SYSTEM EVALUATION AND ALTERNATIVES

Scappoose Storm Drain System Master Plan

CHAPTER 4. SYSTEM EVALUATION AND ALTERNATIVES

4.1 INTRODUCTION

This section describes the evaluation and alternatives to address problems described in Chapter 3. Alternatives are discussed for study area regions east and west of Highway 30.

4.2 WEST OF HIGHWAY 30

Initial alternatives considered for the west side of Highway 30 included:

- 1) On-site detention standards
- 2) Improvements to Scappoose-Vernonia Highway crossing over South Scappoose Creek
- 3) New conveyance systems for the 5th, 6th, 7th street area
- 4) New parallel conveyance system to South Scappoose Creek
- 5) Modification of road crossing structures over South Scappoose Creek (J.P. West and E.M. Watts Road)

4.2.1 On-Site Detention

The City currently has stormwater detention standards for Scappoose Creek. The volume required is necessary to reduce the peak flow rate from the 25-year storm event under developed conditions, to the peak flow rate for the 10-year storm under pre-developed conditions. This practice has helped to limit peak flows discharging to the Creek, and the City should continue this practice.

4.2.2 Improvements to Scappoose-Vernonia Highway

Inspection of the hydraulic evaluation conducted for the current effective flood insurance study revealed that flood elevation increases through the Highway 30/Scappoose-Vernonia Highway reach were between 1.5 to 2.0 feet for the 100-year event. As part of the planned interchange project between the State, County and City, modified bridge openings should be implemented to effectively convey flood flows and thereby reduce water surface elevations through this reach.

4.2.3 New Conveyance Systems for the 5th, 6th, 7th Street Area

This area occasionally experiences standing water and the drainage system is not well-defined. New piping and conveyance systems are recommended for 5th, 6th and 7th Streets, as well as portions of Smith and Wheeler.

4.2.4 New Parallel Conveyance System

A preliminary alternative to provide a parallel overflow or bypass pipe for excess flows on Scappoose Creek was initially considered, but upon review was screened out due to the extensive length and associated costs necessary to complete the piping.

4.2.5 Modification of Road Crossings

Flow in the overbank areas of South Scappoose Creek occasionally flows over the roads at J.P. West and E.M. Watts. New, smaller roadway crossings for drainage are suggested for low points outside of the South Scappoose Creek main channel,

4.3 EAST OF HIGHWAY 30

Initial alternatives considered for the east side of Highway 30 included:

- 1) On-site detention standards
- 2) New pipeline conveyance systems
- 3) Continued and expanded use of dry wells
- 4) Add capacity to the Jackson Creek system

4.3.1 On-Site Detention

The City currently has stormwater detention standards for Scappoose Creek. This policy should be continued for the Jackson Creek basin.

4.3.2 New Pipeline Conveyance Systems

Much of the northeast area (north of High School Way and east of 4th) has no drainage system. New piping systems are suggested for this area in Columbia Avenue, Elm Street and West Lane. The service areas for these systems are generally not suitable for dry well systems. In addition, because many of these areas could discharge to potential wetlands, on-site, developerprovided water quality control systems should be required by the City.

4.3.3 Continued and Expanded Use of Dry Wells

Future use of dry wells should be limited and consistent with OAR guidance provided in Appendix A. In areas where existing dry wells fail in the future, and no piping systems exist, new two-stage (sedimentation, water quality manhole connected upstream) dry wells should be installed.

4.3.4 Add Capacity to the Jackson Creek System

Recent flooding events on Jackson Creek have demonstrated that the channel system does not have capacity to convey flows for extended periods when the south diversion is closed due to high water on the Columbia River. To alleviate this problem, temporary, portable pumping systems are suggested (see Appendix C). Trailer-mounted pumping units could pump approximately 16,000 gallons per minute (35 cubic feet per second) each. Two units could effectively pump the entire 2-year storm flows from Upper Jackson Creek (west of Highway 30), or about 60% of the 5-year storm event. This would only be necessary during high stage events on the Columbia River. The units could also be shared in agreement with Scappoose Drainage District for application at other locations. These units could be purchased for a small fraction of a new, permanent stormwater pump station.

4.4 HYDROLOGIC ANALYSIS

4.4.1 Rational Method

For sizing new piping systems in this plan, KCM utilized the Rational Method to develop future runoff conditions.

The Rational Method was used because of the relative ease with which it can be applied, its general acceptance by the engineering community, and its reliable results. There are several other methods of runoff estimation, such as the unit hydrograph, the Storm Water Management Model (SWMM), and the Hydrologic Engineering Center (HEC) computer models. These methods rely upon measurable rainfall/runoff relationships and are more applicable to larger drainage areas (> 1 square mile) where timing and storage of storm runoff may be of greater importance. When properly applied to drainage areas of 200 acres or less, the Rational Method provides reliable results.

The Rational Method is based on the formula: Q=CIA

where: Q = the runoff rate, cubic feet per second

C = the runoff coefficient, determined by land use

A = the contributing drainage area, acres

I = the rainfall intensity, inches per hour

The basic assumptions for application of the rational method are:

- The computed maximum rate of runoff to the design point is a function of the average rainfall rate during the time of concentration to that point.
- The maximum rate of rainfall occurs during the time of concentration, and the design rainfall depth during the time of concentration is converted to the average rainfall intensity for the time of concentration.
- The maximum runoff rate occurs when the entire area is contributing flow, i.e. at the time of concentration.

4.4.2 Runoff Coefficient and Land Use

The runoff coefficient represents a ratio of surface storm runoff to total rainfall and is dependent upon:

- Type of vegetation
- Type of soil
- Type of land use
- Evaporation
- Soil saturation at the time of rain
- Retention of water in surface depressions.

As part of the study process, two runoff coefficients (existing and future conditions) were determined for each drainage area. The future condition is based on land use zoning as set forth in the City of Scappoose Comprehensive Plan. These land use designations each correspond to a certain percentage of impervious area. The Oregon Department of Transportation Drainage Design Manual establishes "C" values for these zoning designations. Table 4.1 shows the runoff coefficients used for this study according to the land use zoning.

TABLE 4.1 RUNOFF COEFFICIENTS FOR STORM SEWERS

Runoff Coefficient	
0.90	
0.85	
0.85	
0.75	
0.75	
0.55	
0.40	
0.20	
0.20	

These runoff coefficients were used to establish the stormwater runoff at future buildout conditions per the current zoning ordinances.

4.4.3 Time Of Concentration

In order to calculate the peak rate of runoff at any point, it is necessary to know the time of concentration to that point. This time must be known in order to determine the rainfall intensity of a given recurrence interval storm. The time of concentration consists of an inlet time, or time required for overland flow to reach an inlet, and the time of flow within a pipe to the point of consideration. The inlet time is a function of the surface slope, soil conditions, depression storage, surface cover, antecedent rainfall, and the distance of the surface flow. The time in the pipe is calculated by dividing the known length by a computed velocity.

4.4.4 Design Storm Frequency

The selection of the design storm recurrence interval requires selection of the degree of protection desired from the storm drainage system. A design storm with a low probability of being exceeded, such as the 100-year design storm (1% chance of being exceeded in any given year), provides a high degree of safety in the drainage system design. A design storm with a high exceedance probability, such as a 2-year storm (50% chance of being exceeded any given year), will result in a lower cost drainage system whose capacity is exceeded every few years, with possible property damage, public inconvenience and personal hazard. For this plan, and consistent with current City standards, the 10-year storm event was used for pipe sizing in Columbia Avenue, Elm Street, West Lane, and the 5th, 6th, 7th Street system (see Appendix D).

4.4.5 Intensity Duration Frequency Curve

The intensity-duration-frequency (IDF) curve is used to determine the rainfall intensity. Given a time of concentration and a selected design storm frequency, the rainfall intensity is found graphically. The City of Scappoose is located in Zone 8 per the Oregon State Highway Department Drainage Design Manual.

4.5 HYDRAULIC ANALYSIS

4.5.1 Open Channel Flow - Manning's Formula

Most pipes within the storm drainage system were assumed to be flowing full under open channel flow conditions. Most inlet conditions are such that little or no surcharge can be developed and therefore this is a reasonable and conservative assumption. The formula used to evaluate pipes under these circumstances is the Manning Formula, which is expressed as:

 $Q=1.49/n \times A \times R^{2/3} \times S^{1/2}$

where Q =flow, cubic feet per second

- A = cross-sectional area, square feet
- R = hydraulic radius, feet
- S = slope, feet/feet
- n = Manning roughness coefficient

The roughness factor for pipes varies according to the material used and the age of the pipe material. For this planning effort, the *n* values were assumed at 0.013 for smooth pipe.

4.5.2 Open Channel Flow - FEMA HEC-2 (South Scappoose Creek)

The flood profile and HEC-2 computer file for the current effective flood insurance study, was used to evaluate open channel and bridge hydraulics for South Scappoose Creek (see Appendix E).
4.6 COMPUTATIONS FOR FUTURE CONDITIONS

Based on future land use conditions, a spreadsheet-based analysis method was developed following a field inventory of the existing drainage system. Subdrainage basins to each pipe segment were determined using recent aerial mapping, and future runoff conditions and runoff coefficients based on zoning were applied. Based on previous discussions, time of concentrations were determined to each inlet. From this information, a rainfall intensity was found for a 10-year storm event. Flows at junctions were summed and carried forward to the next pipe segment. Physical data describing each proposed pipe segment was input and used to calculate pipe capacity based on the projected flow conditions.

Chapter 5 MANAGEMENT MEASURES

CHAPTER 5. MANAGEMENT MEASURES

5.1 INTRODUCTION

The purpose of this chapter is to present background and guidance for nonstructural issues related to management of storm drainage systems. Specifically, the following sections address design standards, maintenance issues, and legal/liability issues related to storm drainage in Scappoose.

5.2 DESIGN STANDARDS REVIEW

Based on review of the existing drainage design criteria for Scappoose, potential stormwater discharge to wetland areas, and in anticipation of future nonpoint source stormwater regulations, the following sections present suggested approaches for future use by the City.

Erosion and Sediment Control Guidelines

The City should develop a set of erosion and sediment control guidelines as a separate section added to the existing design standards. Alternatively, the City could adopt or modify standards currently in use in Washington County.

Water Quality Control Guidelines

Because areas projected for new development have the potential for discharge to wetlands, and in anticipation of future non-point source regulations, the City should develop a set of water quality control guidelines. The existing design standards should be expanded to include facilities such as: biofiltration swales, oil/water separators, water quality detention facilities, vegetated filter strips, wet/dry storage vaults and sand filters.

Sheet Flow Escape Routes

In addition to existing City criteria, sheet flow escape routes should be investigated for situations in which storms of greater than design magnitude are encountered or when the downstream drainage system becomes clogged. For example, during design of improvements or development review, site grading should be checked and modified where necessary to ensure that excess flows or volumes have a route for escape without endangering property or jeopardizing public safety.

Catch Basins and Manholes

It is suggested that the City continue using sediment trapping catch basins and not inlets. This will facilitate maintenance of the system, ensure that pipe capacity is not reduced by inflowing debris, and will likely be a long-term benefit to water quality. Most of the surface water pollutants are held within the solids that enter the drainage system, and catch basins will allow for easy removal.

Scappoose Storm Drain System Master Plan ...

Dry Wells

Dry wells, or stormwater sumps, are an alternative means of stormwater disposal which discharge to the ground. However, dry wells are not an effective means of stormwater disposal. Dry wells can become clogged or plugged during storm events causing potential damage to downstream property owners. Dry wells also require regular cleaning and maintenance to ensure proper functioning during storm events. Also, long-term discharge to the ground could pose geotechnical and slope stability hazards.

In addition, potential discharge of pollutants could occur over long periods of time and be unnoticed. While dry wells are not strictly prohibited, Oregon Administrative Rules (OAR 340-44-050) contain provisions under which dry wells should be considered/not considered feasible.

The City should use the above described guidelines for drainage improvements or develop design standards for design and implementation of drainage improvements throughout the City's urban growth boundary (UGB). The standards provided herein should be viewed as guidance for design, implementation, and construction of public drainage improvements.

5.3 MAINTENANCE ISSUES

To ensure that the City's storm drainage system will continue to function effectively, and to make full utilization of the existing storm drainage system capacity, a regular program of maintenance is suggested. The City currently has over 30,000 feet of storm drainage piping (almost 6 miles), 300 storm catch basins, 140 manholes, as well as detention ponds, detention pipes and other structures in the storm drainage system inventory (see Appendix F). For purposes of evaluating the storm drainage maintenance requirements for the City of Scappoose, a recommended level of maintenance service was applied to the existing system inventory. Costs were then derived using projected production rates and unit costs for the various maintenance functions. The total annual maintenance budget for the existing system is estimated at \$50,000. In summary, this maintenance budget allows for cleaning of all catch basins up to twice annually, all pipes on a 2-year cycle, and other repair, replacement, maintenance and system inventory requirements (see Appendix F).

5.4 RIPARIAN CORRIDOR PROTECTION

Open drainageways throughout the City should be protected. Jackson Creek, South Scappoose Creek and its hillside tributaries to the west, and other open drainageways should have setback requirements for all new development. Establishing setback requirements for ravines and other steep slope areas is difficult, but METRO has developed a model ordinance which provides guidance for establishing stream buffers (see Appendix G). The City should adopt an ordinance which uniformly considers setbacks for both wetlands and open drainageways.

5.5 LEGAL/LIABILITY ISSUES

This section presents a general background on drainage-related legal/liability issues and should not be used in lieu of advice from the City's legal counsel. Therefore, the following items present a general overview of potential storm drainage liabilities. Historically, the basis for stormwater litigation has been a tort action, as follows:

A municipality undertaking a public drainage improvement is treated like a private party (Harbison v. City of Hillsboro) and is liable for damage resulting from negligence or an omission of duty. (*Reference 10*)

Municipalities are generally under no legal duty to construct drainage improvements unless public improvements require drainage facilities (Denver v. Mason) (Reference 11)

Municipalities are not liable for damages due to overflow of its drainage system in cases of extraordinary/unforseeable rains or floods. (McQuillan) (Reference 12)

Municipalities will likely be liable in cases where they take responsibility for collection of surface waters which are then released onto private property which has not historically received runoff; where dams/diversions cause an overflow onto another's land; or where there is failure to exercise reasonable care in the maintenance and repair of drainage improvements. (*Reference 12*)

In the State of Oregon, the civil law doctrine of drainage applies. Under this doctrine, adjoining landowners are entitled to have the normal course of natural drainage maintained. The lower landowner must accept water which naturally comes to his land from above, but he is entitled not to have the normal drainage changed or substantially increased. The lower landowner may not obstruct the runoff from the upper land, if the upper landowner is properly discharging the water. (*Reference 7*)

Chapter 6 FUNDING ALTERNATIVES

CHAPTER 6. FUNDING ALTERNATIVES

6.1 OVERVIEW

This section describes the range of alternative funding sources that municipalities have used in implementing drainage improvements.

State/Federal Grants and Loans

Various grant/loan programs are available at both the federal and state level. However, no single grant/loan program is available on a consistent, on-going basis for funding of local stormwater management. With communities competing on both a state-wide and even nation-wide basis, and with constraints on how grant/loan money is to be used, these sources can only serve to supplement an existing local funding program for stormwater management.

Debt Financing

General obligation bonds and revenue bonds are two commonly used forms of debt financing for public infrastructure improvements. General obligation bonds, primarily used for major capital improvements, are subject to voter approval and are backed by the full credit of the government issuing them. Revenue bonds, on the other hand, may be sold and secured only by those specific revenue sources which are earmarked for their payment.

System Development Charges

These charges are imposed on new development as a way of recovering costs for that portion of existing system capacity solely attributable to new development or for that portion of required system up-sizing. System development charges can begin to answer questions of who should pay for required up-sizing of the stormwater system due to new development, or how historical payers into the system can recover their costs in over-sizing facilities that enable future growth.

Fee-In-Lieu of On-Site Detention

These fees afford a land developer the option of either constructing an on-site stormwater detention facility in accordance with established design criteria, or paying a fee into a fund dedicated to the construction of an off-site or regional stormwater detention facility serving multiple properties. These fees tend to promote siting and construction of regional versus on-site detention facilities, however, cash flow necessary for a regional stormwater detention facility may not necessarily coincide with the required construction timing.

Improvement Districts and Special Assessments

The concept of deriving funding from local improvement or special assessment districts is founded on quantifying benefits. For water, sewer or street improvements, these benefits can often be easily identified and thus quantified. However, drainage differs in the respect that upstream or hillside properties that are major contributors of runoff may not be specific recipients of benefits.

Scappoose Storm Drain System Master Plan ...

Plan Review and Inspection Fees

These fees are intended to recover the expense of examining development plans to ensure consistency with comprehensive land use and stormwater master plans, and to ensure that construction standards and regulations are met at the construction site. These fees are not intended to be a primary revenue generating source.

Stormwater Service Charges

Another method gaining popularity for financing stormwater management is the utility-based service charge. Historically, the concept of considering stormwater as a public utility attracted very few communities. However, as other more conventional funding sources became difficult to obtain, and as federal requirements increase, the service charge concept has generated greater appeal. Service charges for stormwater management reflect a rationale that those who contribute to stormwater problems should logically contribute to the costs of providing mitigative services.

Ad Valorem Taxes

Ad valorem taxes are taxes levied on a property as a direct result of "value added" to the subject property. However with stormwater, there is no clear correlation between property value and contribution of runoff. Ad valorem taxes could provide a significant source of revenue, however with the apparent lack of equity, should not be considered a primary source for funding stormwater programs.

6.2 SUMMARY

Stormwater service charges and system development charges have typically been viewed by municipalities as the most equitable and reliable methods for funding stormwater capital and maintenance needs. When used in combination, these methods also distinguish both public and private responsibilities.

6.3 BASIS FOR STORMWATER FUNDING IN SCAPPOOSE

Previous sections of this *Storm Drain System Master Plan* have identified the problems and necessary improvements for the stormwater system within the City. The key recommendations resulting from this Plan are:

- Scappoose has significant stormwater facility requirements;
- Maintenance of the City's existing stormwater system cannot be adequately funded within current revenues;
- Phase II NPDES and Clean Water Act compliance mandate local funding for which Scappoose may be a future permit applicant;
- Virtually all jurisdictions in Clackamas, Washington and Multnomah Counties have formed or are in the process of forming stormwater utilities; and
- In May of 1993, the Oregon Supreme Court rendered its decision and in a unanimous vote, overturned the Oregon Tax Court decision and ruled that stormwater utility fees are "incurred charges" under the Measure 5 interpretation and not a "tax".

6.4 REGULATORY MANDATES & PROPOSED SERVICE LEVELS

National Pollutant Discharge Elimination System (NPDES)

Under the Clean Water Act, as implemented through the State's Department of Environmental Quality (DEQ), the City of Scappoose may be required to prepare and implement a plan for characterization and reduction of "nonpoint source" pollution (pollution carried by stormwater runoff). Additional and significant new costs are anticipated in terms of water quality monitoring, staff time and field screening analysis. This program affects all stormwater discharges to "waters of the United States", i.e., the Columbia River system.

Overall Stormwater Needs in Scappoose

The City has determined that its initial stormwater program will focus on facility improvements and an enhanced level of service for system maintenance. The expenditure categories are summarized as follows:

<u>Operations and Maintenance</u> service levels are based on the need to allocate staff to the system in order to continue current maintenance, undertake remedial maintenance projects and increase maintenance frequencies. It is expected that stormwater utility field activities will be expanded to include maintenance of open system, piped system, catch basins/inlets, roadside ditches, erosion control installations, detention/retention facilities and culverts. Exhibit A contains a maintenance worksheet summarizing maintenance activities, frequencies, crewing, equipment and estimated costs.

Estimated Annual Budget = \$55,000 - \$70,000

Engineering Services relates to engineering, design management and technical support functions. Specifically, this will include project management, maintaining technically current design criteria and standards. While plan review and construction inspection will also be performed, these activities are funded through plan review/inspection fees which are paid to the City's General Fund. Therefore, these costs are not reflected in the stormwater budget. Estimated Annual Budget = \$20,000 - \$25,000

<u>Public Works Administration and Support</u> represents the administrative and technical staff time committed to management and development of the stormwater program in terms of intergovernmental coordination, regulatory compliance and code development. Estimated Annual Budget = \$15,000 - \$20,000

<u>Small Works Program</u> will be directed at minor structural improvements, repairs and replacement of the stormwater system and basin analysis/master plan updates. Smaller, localized problems arising in the future and not specifically identified in the master plan (such as broken pipes and catch basins, pipe outfall protection and ditch erosion) can be dealt with through this program.

Estimated Annual Budget = \$25,000 - \$30,000

Scappoose Storm Drain System Master Plan ...

<u>Public Information</u> includes expenditures for public awareness brochures/flyers regarding stormwater program needs, costs and rates. Billing stuffers and newsletters/fact sheets will also be developed as part of the short-term utility implementation information effort and longer term program of public involvement regarding site quantity/quality controls. Estimated Annual Budget = \$3,000 - \$4,000

<u>Finance/Billing/Accounting/Payroll</u> are the utility support functions related to stormwater data processing, invoicing, remittance handling and accounting. The stormwater program's pro rata share of revenue generated in relation to the City's other utility programs is estimated based on projected staffing impacts and allocations based on the total number of additional accounts generated as a result of the program. Estimated Annual Budget = \$8,000 - \$10,000

<u>Indirect Cost</u> for the FY 99 period includes the costs which are allocated to Scappoose's stormwater utility for city manager, city attorney and human resources time. This category also includes the utilities allocation for general government support. The current indirect cost pool is not expected to increase as a result of the stormwater utility. Estimated Annual Budget = \$6,000 - \$8,000

6.5 RATE METHODOLOGY

Contribution Base

Stormwater service charges must be based on factors which relate customer payment with use of the stormwater system and program. In most cases, stormwater programs quantify this relationship in terms of a property's developed condition and the corresponding increase of impervious area. Engineering analysis and legal *precedent (Teter vs. Clark County Storm Water Utility - State of Washington; Long Run Baptist Association vs. Metropolitan Sewer District - State of Kentucky)* have established the correlation between impervious factors and impact on the stormwater system. Accordingly, rate making for stormwater programs attempts to quantify a property's contribution of runoff to the stormwater system in an equitable and cost-effective manner.

The base unit of the service charge is referred to as an "Equivalent Service Unit" (ESU). An ESU in the Scappoose area has been estimated as 2,750 square feet of impervious surface for the "average" single family home.

Impervious Area Measurement

The development factor most related to contribution of runoff is impervious area. Impervious area is typically defined as hard surface area including roof lines, parking, and driveways which impede the natural infiltration of stormwater into the soil. Due to the overall similarity of single family dwellings in terms of impervious coverage, the City may choose to treat single family residences as 1 ESU. All non single family residential customers would be charged based on measured impervious area. These measurements have not been undertaken to date but are anticipated over the next 6 months.

Rate Issues

Exemptions - This issue addresses the rate treatment of tax-exempt properties, such as churches and schools, as well as properties such as streets, direct discharge areas, and undeveloped parcels. The issue is critical in maintaining the legal integrity of the service charge. Once artificial classes of customers - or non-customers - are allowed, then the distinction between a service charge and tax is blurred. For this reason, it is not possible to exclude typically "tax-exempt" properties from the charge, and still remain a service charge under either Measure 5 or generally accepted utility rate making standards.

Public streets are generally exempted from the fee as they are designed to operate as part of the stormwater system. Direct discharge properties have, in some cases, been exempted because they do not drain to the City's system. The same logic applies to undeveloped property which, by definition, do not contain any impervious coverage. Lacking any impervious area would place these parcels outside the established rate structure.

An issue which the City may wish to consider is the City's current policy of exempting its own facilities from utility service charges (water and sewer). Applying this same policy to the proposed stormwater utility may impact its ability to defend against allegations that it is a "tax" under the Measure 5 definition because there is no "use/nonuse of system" logic to support different rate treatment of City-owned facilities.

 Credits - Most stormwater programs offer service charge credits for on-site stormwater mitigation facilities which they construct and maintain. This service charge credit is limited to a maximum allowable reduction based on the demonstrated ability of the facility to attain pre-development flows from the developed site. Conversely, some utilities do not allow a service charge credit based on the fact that on-site mitigation is a known condition of development and reducing post development flows from the site is mandatory under most stormwater ordinances. Rewarding developers for simply meeting stormwater requirements is not considered equitable by some utilities. In Oregon, however, it is essential that the service charge meet the "Measure 5" test of controllability. It is expected that a credit provision will provide the control mandated under recent Tax Court rulings.

The City does have a low income utility fee reduction which can be incorporated into the stormwater rate structure. This reduction will be the same percentage as the other utility discounts and will require the same eligibility review as in the City's other utility operations.

Service Charge Waiver - This rate provision represents further legal protection against the
stormwater charge being interpreted as a tax. The intent is to enable those rare, if any,
properties to show complete non-service from the utility. The criteria for waiver revolves
around the property's ability to show (1) complete on-site retention of stormwater, (2) no
up-stream protection from storm events, and (3) no connection or access to publicly owned
stormwater conveyances/facilities. All these criteria must be proven by the rate payer prior
to receiving a waiver. Again, under Measure 5, it is necessary to establish that the charge is
"avoidable" and it is expected that this type of waiver provision will meet this test.

6.6 PROGRAM FINANCING

The financial analysis has evaluated specific options for structuring the stormwater funding program. In doing this, preliminary budget forecasts have been prepared for initial program operations. At the same time, an impervious surface analysis of the Scappoose area has been prepared through review of land use planning data and current mapping. These two elements comprise the cost and revenue components of the stormwater utility financial analysis. A stormwater rate model has been constructed which evaluates the impacts of alternative financial strategies on the actual amount of the service charge.

The proposed rate structure will need to be translated into a specific utility formation and rate ordinance/resolution. Draft ordinance language (Appendix H) should be jointly reviewed by staff, legal counsel and financial consultant to assure consistency with program priorities and compliance with the provisions of Measure 5 and recent Tax Court decisions.

Rate Structure

The following elements should be considered for inclusion in Scappoose's stormwater rate structure:

- Rate based on impervious surface area;
- Two general customer categories: 1) single family, 2) multi family/commercial/industrial;
- Uniform rate applied to single family;
- Rate based on measured impervious area for multi family/commercial/industrial;
- Publicly owned streets are not charged, publicly owned facilities are;
- Rate reduction available to those customers providing on-site controls of stormwater quantity and quality; low income reduction; and
- Rate waiver available to those customers able to show non-use of the City's stormwater system and program.

6.7 REVENUE FORECAST/BUDGET

Revenue Forecast

Actual impervious surface measurements have not been developed to date. However, based on data provided by City staff, <u>estimates</u> have been prepared resulting in the following equivalent service unit totals:

 Single Family Residential	1,310	
Multi-Family Residential	200	
Commercial	670	
Industrial	1,600	1
Parks/Schools	100	
Other	20	
TOTAL	3,900 ESUs	

Given alternative rates per ESU, the following <u>annual</u> revenue profile would result:

\$3.00 per ESU per month	\$140,400
\$4.00 per ESU per month	\$187,200
\$5.00 per ESU per month	\$234,000

It is important to highlight the fact that the City's rate structure may include both mitigation credits and waivers from the service charge. The fiscal impacts of these rate adjustment provisions have not been incorporated into the above revenue estimates, however, it is reasonable to estimate that these impacts will not exceed 10 to 15 percent of the revenues identified above.

Budget

The initial operating budget is targeted at providing a basic level of stormwater service with emphasis on capital improvements, regulatory compliance, maintenance, public information and water quality programming. Labor costs would focus on allocations of engineer and engineering technician time, maintenance field crew of three persons, along with the Finance Department's program support. Professional service fees would be directed at NPDES permitting costs, along with water quality related sampling, equipment and testing. Based on the existing inventory of capital requirements, an improvements allocation has been included.

The Public Works Department has prepared a CIP for stormwater which will be included in the final rate structure. Options for funding these improvements include both the pay as you go method and issuance of 10 or 20 year revenue bonds. There has also been discussion of combining the City's utility operations under a single/comprehensive utility umbrella with dedicated funds. This type of approach would likely impact the timing for debt financing of capital improvements and the cost of borrowing money for these improvements.

Portland	\$4.05
Unified Sewerage Agency	\$4.00
Eugene	\$4.00
Lake Oswego	\$3.75
West Linn	\$3.75
Lower Tualatin	\$3.25
Bellevue, WA	\$7.25
King County, WA	\$6.80
 King County, WA	\$0.80

A sample of stormwater rates charged in other Northwest jurisdictions follows:

Rate Impacts

Under a rate of \$4.00 per ESU, all single family homes in Scappoose would pay \$4.00 per month. All non single family residential properties would pay a multiple of this base rate depending on their measured impervious area. The formula for calculating the monthly service charge is illustrated as follows:

Measured Impervious Area 2,750 sq ft (est)

of ESUs \times \$4.00 = total charge

By way of example (as no measurements are available as yet), some sample stormwater bills might resemble the following types of development:

=

- apartment building...... \$250.00/month (63 ESUs/172,000 sf/4.0 ac imperv.)

These rates do not reflect any service charge credits or waivers for on-site stormwater quantity or quality management.

6.8 SYSTEM DEVELOPMENT CHARGES FOR STORM DRAINS

SDC Legal Authority

System Development Charges are authorized by Oregon Revised Statutes (ORS) 223.297-314. The statute is specific in establishing the structure for SDCs, how they can be applied, how these funds can be used and the means of their accounting. SDCs are a one time fee imposed on new development, intended to promote equity between new and existing users of public facilities by recovering a proportionate share of existing and planned capital facilities which serve or will serve developing property within Scappoose.

ORS 223 further provides that the charge be calculated based on two fee components. These components are:

- Reimbursement designed to recover costs associated with capital improvements already constructed or under construction; and
- Improvement designed to recover costs associated with capital improvements to be constructed.

Under ORS 223, the **reimbursement fee** must consider the cost of existing facilities, prior contributions by existing users of those facilities, the value of the unused/available capacity, and generally accepted ratemaking principles. The objective is to assure that future system users contribute no more than their fair share to the cost of <u>existing</u> facilities.

Scappoose Storm Drain System Master Plan ...

The reimbursement fee can be spent on capital costs or debt service related to the systems for which the SDC is applied. This means that the reimbursement fee revenues can be used on capital outlays for BOTH existing and future construction, but must be used only for type of facility for which they are collected.

The **improvement fee** addresses the cost of future capital improvements needed to <u>increase the</u> <u>capacity or level of service</u> of the system. In other words, the cost of planned projects which correct existing deficiencies may <u>not</u> be included in the improvement fee calculation. Also, there must be made available to new development a credit to this fee which recognizes any additional costs which new construction incurs in providing a qualified public improvement.

A draft ordinance and resolution for storm drainage system development charges are included in Appendix I.

Chapter 7 RECOMMENDED PLAN

CHAPTER 7. RECOMMENDED PLAN

7.1 INTRODUCTION

Based upon review of existing and potential future problems, and projects as discussed in Chapter 4, project costs have been estimated as shown in Table 7-1. The projects are presented graphically in Figures 7-1 (A-F).

IMMEDIATE NEED - These projects representing current existing system deficiencies or problem areas needing immediate attention. Immediate is defined as within five years to be accomplished as soon as practical considering construction time requirements and timing associated with other related projects.

FUTURE NEED - These projects representing minor existing system deficiencies and near-term growth related improvements. These are expected to be constructed after the five-year immediate scheme, however, some might be moved to more immediate based on demonstrated need.

POSSIBLE FUTURE NEED - These projects are deemed less desirable due to cost/benefit, impact or long-range future need.

7.2 BASIS OF COST ESTIMATE

Cost estimates for the improvements reflect a total project cost for October 1998 (Engineering News Record Construction Cost Index 6749, Seattle, Washington). These estimates were made using construction costs for similar projects and manufacturers information. The costs do not reflect a detailed investigation of existing utilities and soils. It is important to note that the cost estimates are budget level estimates, not engineering estimates, and are intended to be within the range of plus 35% to minus 20% of the actual project cost. The elements which comprise these budget estimates are:

- Component Cost (materials and installation) \$6.50 per inch-diameter per foot
- Construction Contingencies 20% of construction cost
- Allied Costs (engineering, administration, legal financing and construction administration)
 30% of construction cost plus contingencies

Example: 870 lineal feet of new 24-inch storm pipe

Construction Cost =	870 feet x 24 inches x \$6.50 =	\$135,700
Contingencies =	\$135,700 x 20% =	27,100
Allied Cost =	(\$135,700 + \$27,100) x 30% =	48,900
Total Project Cost =		\$211,700

Once the Master Plan is adopted by the City, the projects listed can be selected for completion through the City's budgeting process. The steps for completion are:

- · Project identification and budget level cost estimate (Master Plan)
- Project selection and project budget approval
- Consulting engineer contract to design and construct project
- Preparation of plans, specifications and engineering cost estimates
- Bidding and contract award
- Construction

7.3 ADDITIONAL RECOMMENDATIONS

- The City should add provisions to the current design standards for erosion control, water quality control, sheet flow escape routes and dry wells.
- The City should develop an ordinance for stream and wetland protection buffers.
- The City should establish funding mechanisms (stormwater utility rates and system development charges) based upon and in support of anticipated capital and maintenance costs. Utility rate charges in the range of \$3.50 to \$4.00 are necessary to support a stormwater program as outlined in Chapter 6. System development charges of approximately \$500 per equivalent service unit have been estimated from the capital improvement project list (development allocation \$1,723,000 / remaining ESUs 3570).
- The City should establish, as part of the stormwater utility, a budget for a routine storm drainage maintenance program. This has been estimated at \$50,000 per year.
- The City should establish as part of the stormwater utility, a budget for small capital projects, such as replacement of broken pipes or catch basins, pipe outfall protection, ditch erosion control and other projects not included in the capital project list.

Scappoose Storm Drain System Master Plan ...

Chapter 7. Recommended Plan

				Table 7-1 P	Toject List			
					Utility/	Local	Developer	System
East side of	f Highway	30			Revenue	Improvement	Provided	Development
					Bonds	District	Improvement	Charge
West Lane				Total				
Length	Diameter	Unit Cost	Constr.	Proj Cost				
(feet)	(inches)	\$/in-dia-ft	Cost					
1,700	15	\$6.50	\$166.000	\$259,000	\$259.000			
870	24	\$6.50	\$136.000	\$212,000	\$212,000			
1.570	30	\$6.50	\$306,000	\$477,000	\$477,000			
1.720	42	\$6.50	\$470.000	\$733,000	\$733,000			
5,860			\$1,078,000	\$1,681,000	\$1,681,000	\$0	\$0	\$0
Not in the owner	NUMBER OF STREET	INCASE BUILDEN	angelog Board and		Station of the second second second			
Columbia A	venue			Total				
Length	Diameter	Unit Cost	Constr.	Proj Cost				
(feet)	(inches)	S/in-dia-ft	Cost					
700	30	\$6.50	\$137,000	\$213,000	\$68,000			\$145.000
800	36	\$6.50	\$187.000	\$291,000	\$92,000			\$199,000
2,000	48	\$6.50	\$624.000	\$974,000	\$309,000			\$665,000
3,500			\$948,000	\$1,478,000	\$469,000	\$0	50	\$1,009,000
Elm Street	Contract Internation			Total	PARTICIPAL PROPERTY AND ADDRESS	CONTRACTOR OF THE OWNER	Artifican (Business)	
Length	Diameter	Unit Cost	Constr	Proj Cost				
(feet)	(inches)	S/in.dia.#	Cost	rid cost				
1.660	1.6	5/ II-014-1	2151 000	0006 000	0005 000			
1,000	13	00.00	0151.000	0233,000	0242.000			
1.000	29	00.50	3156.000	8243,000	8243.000			000 000
000	30	36.50	\$117.000	\$182,000	\$94,000			588,000
1,600	30	\$6.50	\$374,000	\$584.000	\$303.000	44	**	\$281.000
4,750	- Street and and a	And in the second line	\$798,000	\$1,244,000	\$875,000	50	SO	\$369,000
Vine Street				Total		deal when the start we had been	Conception and a second of the	Column a contribution data
Length	Diameter	Unit Cost	Constr	Proi Cost				
(feet)	(inches)	S/in-dia-R	Cost	110,0001				
600	15	\$6.50	\$59.000	\$92.000	\$92.000			
500	18	\$6.50	\$59,000	592.000	\$92.000			
1 220	24	\$6.50	\$192,000	8200 000	\$200,000			
600	36	S6.50	\$140,000	\$218,000	865.000			\$153.000
700	42	SE 50	8101 000	0000 000	889.000			\$209.000
3.630	46	30,30	\$641,000	\$999,000	\$637,000	ŝõ	\$0	\$362,000
3,030	Standal and	Number of Street	3041,000		3037,000		Sol in the second se	soon, ooo
Sawyer Stre	et			Total				
Length	Diameter	Unit Cost	Constr.	Proj Cost				
(feet)	(inches)	S/in-dia-ft	Cost					
400	15	\$6.50	\$39,000	\$61,000	\$61,000			
800	18	\$6.50	\$94,000	\$147.000	\$147,000			
1.400	24	\$6.50	\$218,000	\$341.000	\$341.000			
2,600			\$351,000	\$549,000	\$549,000	\$0	\$0	\$0
STAR NEW YORK	100000000000000000000000000000000000000	12122	A DANDARD	Accession and a second	Column Property Control	10.000	VALUE AND DESCRIPTION	1 Constant Age of the states
Airport Indu	strial			Total				
Length	Diameter	Unit Cost	Constr.	Proj Cost				
(feet)	(inches)	S/in-dia-ft	Cost				Developer	
0	0	\$6.50	80	\$0			Provided	
0	0	\$6.50	50	so			Improvement	
0		_	\$0	\$0	\$0	\$0	\$0	\$0
AND AN ALL AND	s, dae too balle on Ann	the later of the state	Contraction of the second		index an an and the second	Second Second States		Contraction of the
lackson Cre	ek							
Temporar	ry Pumping	Facilities (Tra	iler Pumps)					
16.000 g	pm pump on	trailer with a	separate diesel e	engine on trailer				
	gpm	cfs						
	16.000	35.7		\$40 - \$50K				
	16.000	35.7		840 - SSOK				
	32,000	71.3		\$100.000	\$100,000			
mail Reference of the Control of the	In the Plant	the statement in the surgery of	and the second	RECORDERING PRODUCT	NEW PROPERTY AND INCOME	Martin Providence		PROPERTY AND INC.
Cast Side of	Highway	30 Subtot	al	\$6.051.000	\$4 311 000	\$0	80	\$1,740,000

		_	Tal	ble 7-1 Project	List (continue	ed)		
West side of Highway 30					Utility/ Revenue Bonds	Local Improvement District	Developer Provided Improvement	System Development Charge
5th. 6th. 7	th, (Smith	Road)		Total				
Length	Diameter	Unit Cost	Constr.	Proj Cost				
(feet)	(Inches)	\$/in-dia-ft	Cost					
1.000	36	\$6.50	\$234 000	\$365.000				
200	18	\$6.50	\$23,000	836.000				
200	18	\$6.50	\$23,000	\$36.000				
200	18	\$6.50	\$23,000	\$36.000				
1,600			\$303,000	\$473,000	\$0	\$473,000	\$0	\$0
and operations in the		and companying	and the second		A CARE OF CHICK AND A CARD &	Service Bellevice Styring in	professiona vite entry	protocol responses have
5th. 6th. 7	th (Wheele	er Road)		Total				
Length	Diameter	Unit Cost	Constr.	Proj Cost				
(feet)	(inches)	S/in-dia-ft	Cost					
1.000	24	\$6.50	\$156.000	\$243,000				
200	18	\$6.50	\$23,000	\$36.000				
200	18	S6.50	\$23,000	\$36,000				
200	18	\$6.50	\$23,000	\$36,000		-		
1.600			\$225,000	\$351,000	\$0	\$351,000	\$0	\$0
	and produce of	and of the local division of the local divis	and the second		S reliving heatings	Same of the second second second	00000000000000000000000000000000000000	A SHOT IN THE PARTY OF
IP West Stor	rm Pipelin	e		Total				
Length	Diameter	Unit Cost	Constr.	Proj Cost				
(feet)	(inches)	S/in-dia-ft	Cost					
1.000	15	\$6.50	\$98,000	\$153,000	\$153.000			
750	24	\$6.50	\$117,000	\$182,000	\$182,000			
1.750			\$215,000	\$335,000	\$335,000	\$0	\$0	\$0
Callahan - D	utch Can	on Area	Contraction Contractory	Total		all for the fact with		Annalise in the last of the state of the sta
Length	Diameter	Unit Cost	Constr.	Prot Cost				
(feet)	(inches)	S/in-dia-ft	Cost				Developer	
0	0	\$6.50	80	80	so		Provided	
0	0	\$6.50	80	80	50		Improvement	
0			\$0	\$0	\$0	\$0	\$0	\$0
Contraction of the local	and the second	and the second se	THE PARTY OF	mart with new provide	Collection of Manager	a long to your back	when many a strain	A BREAK BELLEVILLE
Cappoose C US Hwy :	30 / Scapp ODOT. Coh	oose-Vernoniu umbia County.	a Bwy . City of Scappo	ose				
JP West (low flow culvert) \$39,000			\$39,000	\$39.000				
EM Watts (low flow culvert) \$39,000			\$39.000					
			Non-They developed	all and the second s	and knowledge of a state of	abacta filtrate underver	Supplemented	
Vest Side of	Highway 3	30 Subtotal		\$1,237,000	\$413,000	\$824,000	\$0	\$0
ast Side of I	Highway 3	0 Subtotal		\$6.051.000	\$4,311,000	\$0	\$0	\$1,740,000
TOTAL				\$7,288,000	\$4,724,000	\$824,000	\$0	\$1,740,000

APPENDICES

Appendix A GROUNDWATER DISCHARGE

Appendix B PUBLIC INPUT

Form #

CITY OF SCAPPOOSE STORM DRAIN SYSTEM MASTER PLAN

CITIZEN COMMENT FORM Public Open House - March 5, 1997

Please complete this form and return it to Brad Moore at the Sign-in table -OR- return it by mail no later than March 7, 1997, to Ben Shaw, City of Scappoose, P.O. Drawer "P", Scappoose, OR 97056. Thank you.

Name: Address: Phone:

1.

DOB PINDER				
34345 NE SUNSET LP.	SCAPPOOSE	or	97056	
543-5688				

A. Have you experienced any flooding on your property? KK Yes____No

B. If so, what areas of your house/property were flooded? _____First Floor____Basement_K_Garage_K_Crawl Space Under House _____Yard/Land___Other_____.

C. If your property has flooded, please describe in detail the extent of the flooding and any damages that occurred. <u>Please include dates and times of the day of the flooding if possible</u>.

FEBRUARY 7, 1996 FLOODING OCCURRED DUE TO STDEM. RAINWATER RUNOFF FROM BIRD RD. AND SURROUNDING AREAS CONTRIBUTED TO FLOODING ON PROPERTY IN LOT NEXT TO MINE. WATER WAS APPRICHIMATELY 2' DEEP IN STEET. WATER CONTINUED TO RISE AND FLOODED CEAWL SPACE UNDER HOUSE. WHIER WAS HALFWAY UP INTO YARD, AND CRAWL SPACE WAS ABOUT 8" DEEP AT THAT POINT. I STARTED TO PUMP OUT SPACE. I HAD TO CONTINUE PUMPING FOR I'Z WEEKS AFTER RAIN STOPED. THERE WAS ABOUT 2" AN HOUR COMING IN TO REDUCT 5 DAYS. WATER RUNOFF FROM PRIVATE ROAD BE HIND HOUSE WENT UNDER GARAGE DOOR AND INTO GARAGE. IN ATTEMPT TO REDUCE STANDING WATER IN ROAD, BEN SHAW OPENED SEWER LINES TO STREET, TO HELP DRAIN THE ROAD. DAMAGE TO PROPERTY RESULTED IN REPLACEMENT OF HEAT DUCTS AND INSULATION AT A COST OF 1000.00.

PECEMBER 28, 1996 RAIN FELL ACAIN AND FLUDDED STREET WITHIN TWO DAYS. X-MAS VACATION WAS CUT SHORT WITH A CALL FROM NEIGHBORS WITH CONCERN TO OUR PROPERTY. UPON ARRIVING HOME WATER WAS ALREADY HALF WAY IN FRONT YARD. THE WATER STAYED APPROXIMATELY 142 WEEKS AND RESULTED IN PUMPING OUT CRANL SPACE AGAIN FOR A PORIOD OF I WEEK Based on your observations, did it appear that the flooding came from the street, or another property or source? Please describe in detail.

BASED ON MY OBSECTATION THE WATER IN THE STREET WAS A DEFINITE SOURCE OF FLOODIA THE DRY WELL SUMPS ARE NOT ADEQUATE. WATER TABLE IS TOO HIGH TO START WITH, AND WATER WAS ALSO FORCED STRAIGHT OUT OF THE GROUND, ALL STANDING WATER WAS ALSO TESTED, AND FOUND TO BE CONTAMINATED, DUE TO SEPTIC AND FARM LAND. SUNSET LOOP IS ALSO A LOW SPOT FOR WATER RUNOFF OF ROADS AND LAND BETWEEN BIRD RD. AND MILLER AD.

3. Have you had any other significant drainage related problems? K Yes No If so, please describe in detail.

ANYTIME IT RAINS FOR MORE THAN 2 DAYS, WE HAVE STANDING WATER IN THE STREET, AT ANY GIVEN TIME THE DRYWELL SUMP IS ALWAYS NO LESS THAN HALF FULL. EVEN PEOPLE JUST WASHING THERE BARS ADDS TO THE SUMP IN STREET, AND WATER THERE WILL NOT MON ALLOW WATER TO DRAIN PROPERLY.

Have you made any changes to your home or property as a result of flooding?
 Yes K No

If so, please describe in detail.

PREITY HARD TO DO WHEN YOUR HOME WAS BUILT AND APPROVED BY CITY OR COUNTY TO BE IN A LOW AREA RESULTING IN BEING A POND. A SUMP AUMP MAY BE SOMETHING TO LOOK AT IN THE FUTURE. BUT AS IT IS NOW, THERE IS ONLY A RECIRCULATION EFFECT TO TRY TO KEEP AS MUCH WATER OUT OF CRAWL SPACE AS POSSIBLE, UNTIL WATER LEVEL GETS TO A CERTAIN POINT, AND THEN IT'S NO GOOD WITHOUT THE WATER IN STREET GOING SOMEWARE. WE ARE UNSURE WHETHER OR NOT TO EVEN DO LANDSCAPING OR FENCE ETC. WHEN PROBLEM IS REACURRING.

Form # 6

CITY OF SCAPPOOSE STORM DRAIN SYSTEM MASTER PLAN

<u>CITIZEN COMMENT FORM</u> Public Open House - March 5, 1997

Please complete this form and return it to Brad Moore at the Sign-in table -OR- return it by mail no later than March 7, 1997, to Ben Shaw, City of Scappoose, P.O. Drawer "P", Scappoose, OR 97056. Thank you.

Name: Address: Phone:

1.

R. Dale Grubb 33918 NE Prairie St. Scopping 503-543-6037.

A. Have you experienced any flooding on your property? <u>Y</u> Yes No

B. If so, what areas of your house/property were flooded? _____First Floor____Basement___Garage____Crawl Space Under House _____Yard/Land___Other_____.

C. If your property has flooded, please describe in detail the extent of the flooding and any damages that occurred. <u>Please include dates and times of the day of the flooding if possible.</u>

We are on a dead end street. The waty runs down to us for 2 blocks. There is no place for they water to go except around 3 houses they. Feb, 1996 afternoon.

Based on your observations, did it appear that the flooding came from the street, or another property or source? Please describe in detail.

Street. we are on a dead and with no story drainage, It is easy to see rain water running down the street during heavy rains

Have you had any other significant drainage related problems? Yes \bigvee No If so, please describe in detail.

Have you made any changes to your home or property as a result of flooding? ____Yes____No If so, please describe in detail.

2.

3.

4.
Form # 8

CITY OF SCAPPOOSE STORM DRAIN SYSTEM MASTER PLAN

<u>CITIZEN COMMENT FORM</u> Public Open House - March 5, 1997

Please complete this form and return it to Brad Moore at the Sign-in table -OR- return it by mail no later than March 7, 1997, to Ben Shaw, City of Scappoose, P.O. Drawer "P", Scappoose, OR 97056. Thank you.

Name: Address: Phone:

1.

E. UNSET / ADP

A. Have you experienced any flooding on your property? Yes No

B. If so, what areas of your house/property were flooded? ______First Floor____Basement____Garage_X_Crawl Space Under House ______X Yard/Land_X Other_____REET___DENG [] AY

C. If your property has flooded, please describe in detail the extent of the flooding and any damages that occurred. <u>Please include dates and times of the day of the flooding if possible.</u>

1.) Dez. 1995- HETER MALDE WINDSTDEM, Appen 2/3 OF BACK YARD FLOODED TO A DEPTN OF 6-8".

2.) FB. 1946 - QUEING MANOR FROD, ENTIRE BACK YARD, SIDE YARD, DRIVE WAY AND PORTION OF FEMIT YARD FUDDED. MATTER RANSOD ID A LEVEL IN CRAWL SPACE UNDER HOUSE UNDER TO A LEVEL IN CRAWL SPACE SUBMERED TO JUST UNDER THE REGISTERS IN EVERY ROOM OF THE HOUSE. REDUIED AU DUOT WORK UNDER THE HOUSE. REDUIED AU DUOT WORK UNDER THE HOUSE. REDUIED AU DUOT WORK UNDER THE HOUSE. REDUIED AU DUOT WORK TOTALLY RECESS FOR APPEND. BUCKLESS. 3.) DEC. LAW. (46-97) WAREN FLODDED WERE 'N OF BACK YARD, AS WELL AS ADJACENT PRODED WERE AND STREET IN FRONT OF HOUSE. Based on your observations, did it appear that the flooding came from the street, or another property or source? Please describe in detail.

HOODING OCCURES AFRER WARR PABLE FILLS UP AND SURFACES OUT PROPERTY.

Have you had any other significant drainage related problems? X Yes No If so, please describe in detail.

AFTER SEVERAL DAYS OF SEVERE LOLD AND OR SHOW AND QUICK MAN, LAND FLOODS.

Have you made any changes to your home or property as a result of flooding? Yes_____No If so, please describe in detail.

1.) REPLACE ALL VENTILATION FLEX DUCT WHER UNDER HOUSE -2.) CANT DO ANY FILLY TO PREVENT LAND FROM FRODONG. / HAVE LONSINGED ETEVATING BALL YOLD TO ELIMINAR: THAT AROBIEM BUT IT WILL CAUSE ADDITIONAL PROBLEMS D NEIGHBORS.

2.

3.

4.

Form #

CITY OF SCAPPOOSE STORM DRAIN SYSTEM MASTER PLAN

<u>CITIZEN COMMENT FORM</u> Public Open House - March 5, 1997

Please complete this form and return it to Brad Moore at the Sign-in table -OR- return it by mail no later than March 7, 1997, to Ben Shaw, City of Scappoose, P.O. Drawer "P", Scappoose, OR 97056. Thank you.

Name: Address: Phone:

USS TILANDER CAPPOSE DRAWAGE TAPROV. CO.

1.

- - B. If so, what areas of your house/property were flooded? _____First Floor____Basement____Garage_____Crawl Space Under House _____Yard/Land___Other_____.

C. If your property has flooded, please describe in detail the extent of the flooding and any damages that occurred. <u>Please include dates and times of the day of the flooding if possible.</u>

LAST TWO YEARS. EXCESSIVE FLOW

MITO JACKSON CREEK AT JOHNSON'S

LANDING RD. DIVERSION / TIDE GATE.

Based on your observations, did it appear that the flooding came from the street, or another property or source? Please describe in detail.

2.

HWY 30, FRED MEYER ET AL

3. Have you had any other significant drainage related problems? Yes____No If so, please describe in detail.

DEPINAGE IMPROVEMENT CO. HAS INCURRED GEOMETRIC ADVANCES IN AMPING RELATED COST.

DISTRICT Have you made any changes to your home or property as a result of flooding? 4. Yes_No If so, please describe in detail. · ARMY CORPS HAS BOON BROUGHT TO THE TABLE TO CORRECT FLAWS, REPAIR DIKE, ETC.

· FEE STRUCTURE is BETHY REASSESSED.

· I WOULD LIKE TO SEE (# HERE) CONTINUED DISCUSSION OF FEES ASSESSED IN SLAPPOSE Applied TO DRAINAGE District porginy 00813.

Form #

CITY OF SCAPPOOSE STORM DRAIN SYSTEM MASTER PLAN

CITIZEN COMMENT FORM Public Open House - March 5, 1997

Please complete this form and return it to Brad Moore at the Sign-in table -OR- return it by mail no later than March 7, 1997, to Ben Shaw, City of Scappoose, P.O. Drawer "P", Scappoose, OR 97056. Thank you.

Name:	Michael	4	Lisa Sc	hott		
Address:	34369	NE	Sunset	LOOD	Scappoose.	
Phone:	543-79	50			.,,	

1.

A. Have you experienced any flooding on your property? X Yes No

B. If so, what areas of your house/property were flooded?

_____First Floor____Basement____Garage_X_Crawl Space Under House_____ X_Yard/Land___Other_____.

C. If your property has flooded, please describe in detail the extent of the flooding and any damages that occurred. <u>Please include dates and times of the day of the flooding if possible.</u>

Suring the Feb. 1996 flooding, the corner of our backyard extending up to the deck was under water. Also, the crawl space accumulated about 10 inches of water. We purchased a sump pump to keep it under control. We had the heat ducts furnigated as a precaution.

Again, during the Nov. 1996 frowling we had about 8 inches of water in the crawl space. Our backyard only flooded about halfway (15ft) to the deck. Based on your observations, did it appear that the flooding came from the street, or another property or source? Please describe in detail.

2.

3.

4.

It appeared to be coming from the street and straight up out of the ground.

Have you had any other significant drainage related problems? Yes \times No If so, please describe in detail.

Have you made any changes to your home or property as a result of flooding? ____Yes____No If so, please describe in detail.

Form #	
--------	--

CITY OF SCAPPOOSE STORM DRAIN SYSTEM MASTER PLAN

<u>CITIZEN COMMENT FORM</u> Public Open House - March 5, 1997

Please complete this form and return it to Brad Moore at the Sign-in table -OR- return it by mail no later than March 7, 1997, to Ben Shaw, City of Scappoose, P.O. Drawer "P", Scappoose, OR 97056. Thank you.

 100	and the second sec		
 a carrier	and the second	Contact Laboration of the	

1. A. Have you experienced any flooding on your property? Yes No

B. If so, what areas of your house/property were flooded? _____First Floor____Basement___Garage____Crawl Space Under House _____Yard/Land___Other_____.

C. If your property has flooded, please describe in detail the extent of the flooding and any damages that occurred. <u>Please include dates and times of the day of the flooding if possible.</u>

Based on your observations, did it appear that the flooding came from the street, or another property or source? Please describe in detail.

3.

4.

2.

Have you had any other significant drainage related problems? Yes No If so, please describe in detail.

Have you made any changes to your home or property as a result of flooding? ____Yes____No If so, please describe in detail.

SCAPPOOSE DRAINAGE MASTER PLAN PLEASE SIGN IN address Phone nome 1. Brad Moore, KCM 7080 SW Fir Loop 684-9097 2. Ben Shaw 3. Nome Hampton 33363 Store Bd. Warnen O. 4. BOB & TRACY PINDER 34345 DE SUBSET LOOP 543-5.8 543-6573 5. Marie Dadotto 33717 Johnsons Ludy la Sauppoose 6 Dale Stubb 33918 NE Prine St. Scapsone 543-6037 7 Novig + Pauly have 34385 NE suma hoop Scopp. 543-6424 8. LYNN MILLS 34361 N.E. Susso Loop 543-7519 9. RUSSTILANDE 33963 CAROGE DR. 543-7762 and a series of series of the series of

Appendix C PORTABLE PUMPING SYSTEMS

Scappoose Storm Drain System Master Plan

			Ja	City o ckson Cre	of Scapp ek at H	oose lighway 3	0			-				
Recurrence	Exceedance	Regression	Drainage	e Area, Squai	re Miles	Drainage	Rainfall	Intensity	Peak	Unit		Pumpi	ng Rate	
Interval	Probability	Constant	Multnomah	Columbia	Total	Area	Intensity	Exponent	Flow	Peak Flow	15,708	31,416	47,124	62,832
Years	%		County	County		Exponent	(in/hr)		(cfs)	(cfs/sqmi)	35	70	105	140
											1	Remaining	peak flow	
2	50	8.7	1.32	1.65	2.97	0.87	2.00	1.71	73.4	24.7	38.4	3.4	-31.6	-66.6
5	20	15.6	1.32	1.65	2.97	0.88	2.00	1.55	119.1	40.1	84.1	49.1	14.1	-20.9
10	10	21.5	1.32	1.65	2.97	0.88	2.00	1.46	154.2	51.9	119.2	84.2	49.2	14.2
25	4	30.3	1.32	1.65	2.97	0.88	2.00	1.37	204.1	68.7	169.1	134.1	99.1	64.1
50	2	38.0	1.32	1.65	2.97	0.88	2.00	1.31	245.6	82.7	210.6	175.6	140.6	105.6
100	1	46.9	1.32	1.65	2.97	0.88	2.00	1.25	290.7	97.9	255.7	220.7	185.7	150.7

Scappoose Storm Drain System Master Plan

Makers of quality Sludge Removal Systems

Brad Moore Water Resources Engineer KCM, Inc. 7080 SW Fir Loop Portland, OR 97223

Dear Mr. Moore:

PORTLAND OFFICE KCM, INC.

Thank you for your request for information about SRS Crisafulli pumps and sludge removal systems. I am enclosing a variety of information for your review. SRS Crisafulli manufactures a wide range of submersible pumps, typically used for high volume, low head applications. In very brief terms, here are just a few of their benefits:

- + Pumping capacities from 200 to 18,000 GPM to precisely fit your needs;
- Move large volumes of water, as well as solids-laden, viscous fluids economically;
- Fully submersible to eliminate the need for priming and suction hoses;
- Long, useful life because of design simplicity & rugged construction;
- PTO, diesel engine, electric or hydraulic motors, whichever you prefer;
- Supported by warranty as well as our entire staff.

We are often told that our greatest strength is problem solving. For nearly 40 years, together with our industrial, agricultural and municipal customers, we've solved many water & wastewater management problems by applying the best Crisafulli pump or dredge for the job. Here are just a few of the solutions we've found for customers we regularly serve:

- Municipal water & wastewater treatment Our fully articulating cutterhead minimizes turbidity & resuspension of solids while dredging the light sludges most of our municipal customers handle.
- + Power generation coal-fired plants have found that SRS dredges & pumps capably handle problematic ash, coal fines, and sediment, while maintaining the capacity of run-off ponds.
- Chemical companies long-time SRS customers, often prefer the FLUMP (our remote-controlled, unmanned dredge unit) for those hazwaste containments where operator control from shore is preferable to operator "on-board".
- Mining metals & minerals producers use SRS dredges & pumps for sludges, slurries, & tailings.
 We've customized dredges in stainless steel to handle acidic wastes at zinc & bauxite operations.
- + We can now handle weeds while dredging cleaning & desilting of lakes & waterways is simpler!

Our Factory Representative for your area is:

Mr. Howard Taub • Granich Engineering 127 10th St S, Ste 100, Kirkland WA 98033 Phone: 206-889-8744 • Fax: 206-889-9348

We have informed that office of your interest. Your SRS rep is well equipped to advise you concerning product applications, performance, and pricing. On behalf of SRS, we look forward to serving you.

Sincerely, SRS Crisafulli, Inc.

Cathy Sirheart

Kathy Airheart, Marketing Representative Box 1051 Crisaruili Drive •Glendive MT 360-1051 •USA Phone: 406-365-3393 • Toll-free: 800-442-7867 • Fax: 406-365-8088 Admin. • Fax: 406-365-2249 Sales

Crisafulli

TRAILER PUMPS

- equipped with PTO shaft to connect pump to your tractor power take-off
- options for diesel, electric, or gasoline power
- simple to operate
- · easy to transport
- discharge sizes from 4" - 24"
- pumping outputs from 1,000 to 20,000 gpm

Call or Fax Today for Quotations & Specifications.

Moving large volumes of water . . .

... is what your Crisafulli trailer pump will do best! You can simplify your irrigation, dewatering, water transfer and flood control projects with trailer pump portability. At an unimproved pumping site, your trailer pump can be installed and operating within minutes, without check valves, suction hose or priming. You can pump it — quickly !

CRISAFULLI PUMP COMPANY TOLL-FREE: 800-442-7867 CRISAFULLI DRIVE TELEPHONE: 406-365-3393 For Purchasing Agents
Price Range:
\$5,000 - \$15,000
Delivery:
3 - 4 Weeks ARO
Terms:
Net 30 days
with approved credit
Ship By:
Truck

GLENDIVE, MT 59330 FAX: 406-365-8088

BACC Desers Classics UT 10m 7.691

- · Easy to transport
- Butyl-nylon-rubber
- Weather resistant
- Low friction loss
- Quantity discounts
- Immediate delivery

You can load several rolls into a pickup, with no special trailer needed. This hose will go over uneven ground, across ridges, through places where metal pipe won't work.

ORDER A ROLL TODAY. Each roll is fifty feet long, ready for your job site.

Your discharge hose is ready, sir.

Many contractors also use Crisafulli pumps for their dewatering or sewage work. You can use diesel, gasoline, electric or hydraulic power. And they pump almost anything.

Crisafulli Drive Glendive, Montana 59330

BOSS Printing, Glendove, MT 59330

P	ARTS LIST
1.	BEARING
2.	SHAFT
3.	TONGUE JACK
4.	HUB ASSEMBLY
5.	TIRE AND RIM
6.	BACK DOOR
7.	ELECTRIC MOTOR
8.	BELTS & SHEAVES
9.	AXLE ASSEMBLY
10.	U-BOLTS (2 REQ.D)
11.	LUG NUTS

OUND		DIMENSIONS (INCHES)										
MODEL			14	0	1.4.15	8	INT	AKE	WEIGHT			
#	L	п	"	C	Single	Double	e Single	Double	(lbs)			
LEO4	18'-5"	39"	26"	4.5"	3"	3"	9"	7"	2000			
LE06	18'-6"	43"	27.5"	5.5"	3"	9"	9"	7"	2050			
LE08	18'-7"	48"	30"	6.5"	3"	9"	9"	7"	2300			
LE10	18'-8"	50"	30.5"	8"	3"	9"	10"	9"	2450			
LE12	18'-10	'52"	31"	9.5"	N.A.	9"	N.A.	9"	2550			
LE16	19'-1"	60"	35.5"	12.5'	NA.	9"	N.A.	12"	3350			
LE24	19'-6"	84"	52"	18"	NA	9"	N.A.	15"	5000			

Min our continuing effort to provide excellence in pumping performance and efficiency, SRS Crisafulli Inc. may modify the pump dimensions without prior notice. For construction dimensions please contact the factory.

Crisafulli Sludge Removal Systems LONG HITCH ELECTRIC TRAILER PUMP REV. (2) 1/7/97 Dwn By: CKR Ckd.: Date: 4/29/1992 Dwg.#: CPC-92206

SELF-CONTAINED * ECONOMICAL * RUGGED * EASY TO INSTALL

* FEATURES

* OPTIONS

-SKID MOUNTED 24 HOUR FUEL RESERVOIR -OTHER ENGINE MANUFACTURERS AVAILABLE In our continuing effort to provide excellence in pumping performance and efficiency, SRS Crisafulli may modify the dimensions without prior notice. For construction dimensions please contact the factory.

. THESE FEATURES SUBJECT TO CHANGE WITHOUT NOTICE

L SSRS	PHONE: (406) 365-3393 FAX: (406) 365-8088
Crisafulli	Sludge Removal Systems
STRAIGHT PU	MP W/DIESEL ON-FRAME ANDARD UNIT
Dwn By: MDM Ckd.:	Date: 7-7-97 Dwg.#: CPC-97558

		WEST L	ANE/GF	AVEL PIT	2			
Location	Drainage	e Runoff		13.0	mase in the	late		00700
math and growners a	Area (acres)	Coefficient C	СхА	Length feet	Velocity fps	Time	Intensity in/hr	Peak Flow cfs
at Oak	21.47	0.35	7.51	900	3	10.0	1.78	13.4
at Olive	19.07	0.35	6.67	1280	3	7.1		
Oak + Olive	40.54	0.35	14.19			17.1	1.40	19.9
at Crown Logging	38.73	0.60	23.24	1650	3	9.2		
Oak + Olive + Crown Logg	in 79.27	0.47	37.43			26.3	1.14	42.7
	A COMPANY	COLL	DARIA A	VENILIE		de la Caso	141-521-40	
Location	Drainage	Runoff	MIDIA A	VENUE		-	_	
	Area (acres)	Coefficient C	CxA	Length feet	Velocity fps	Time	Intensity in/hr	Peak Flow cfs
at North	38.05	0.45	17.12	800	3	10.0	1.78	30.5
at Bird	47.32	0.35	16.56					
at North + Bird	85.37	0.39	33.68	1800	3	15.0	1.50	50.5
at Miller	41.69	0.30	12.51					
North + Bird + Miller	127.07	0.36	46.19	2600	3	20.0	1.30	60.1
	10001000440	ELM	STREET	ROAD	THE PARTY CONTRACTOR	11.0.25	1993年1995年1993年 1995年 1995年 1995年 1995年 1995年 1995年 1995 1995	CALL CALL DAY OF D
Location	Drainage	Runoff			1999			
	Area (acres)	Coefficient C	CxA	Length feet	Velocity fps	Time	Intensity in/hr	Peak Flow cfs
at North	36.65	0.35	12.83	1000	3	10.0	1.70	21.8
at Bird	20.09	0.30	6.03					
at North + Bird	56.75	0.33	18.86	1900	3	16.0	1.50	28.3
at Miller	19.68	0.30	5.90					
North + Bird + Miller	76.43	0.32	24.76	2700	3	20.0	1.30	32.2

Location Drainage Runoff Area Coefficient C x A Length Velocity Time Ir (acres) C feet fps 14.69 0.30 4.41 SMITH Location Drainage Runoff Area Coefficient C x A Length Velocity Time In (acres) C feet fps 32.14 0.30 9.64 SAWYER Location Drainage Runoff Area Coefficient C x A Length Velocity Time In (acres) C feet fps	ntensity in/hr 1.78 ntensity in/hr 1.78	Peak Flow cfs 7.8 Peak Flow cfs 17.2
14.69 0.30 4.41 SMITH Location Drainage Runoff Area Coefficient C x A Length Velocity Time Ir (acres) C feet fps 32.14 0.30 9.64 SAWYER Location Drainage Runoff Area Coefficient C x A Length Velocity Time Ir SAWYER	1.78 ntensity in/hr 1.78	7.8 Peak Flow cfs 17.2
SMITH Location Drainage Runoff Area Coefficient C x A Length Velocity Time Ir (acres) C feet fps 32.14 0.30 9.64 SAWYER Location Drainage Runoff Area Coefficient C x A Length Velocity Time Ir	ntensity in/hr 1.78	Peak Flow cfs 17.2
SMITH Location Drainage Runoff Area Coefficient C x A Length Velocity Time Ir (acres) C feet fps 32.14 0.30 9.64 SAWYER Location Drainage Runoff Area Coefficient C x A Length Velocity Time Ir	ntensity in/hr 1.78	Peak Flow cfs 17.2
Location Drainage Runoff Area Coefficient C x A Length Velocity Time Ir (acres) C feet fps 32.14 0.30 9.64 SAWYER Location Drainage Runoff Area Coefficient C x A Length Velocity Time Ir (acres) C	ntensity in/hr 1.78	Peak Flow cfs 17.2
32.14 0.30 9.64 SAWYER Location Drainage Runoff Area Coefficient C x A Length Velocity Time In	1.78	17.2
SAWYER Location Drainage Runoff Area Coefficient C x A Length Velocity Time In (carea)		
SAWYER Location Drainage Runoff Area Coefficient C x A Length Velocity Time In		
Location Drainage Runoff Area Coefficient C x A Length Velocity Time In		
(acres) C feet fps	ntensity in/hr	Peak Flow cfs
13.77 0.30 4.13	1.78	7.4
「「「「「「「「」」」、「「」」、「」、「」、「」、「」、「」、「」、「」、「」	Les Ma	ALL AND A REAL
VINE		
Location Drainage Runoff Area Coefficient C x A Length Velocity Time In (acres) C feet fps	ntensity in/hr	Peak Flow cfs
30.18 0.65 19.62 900 3 10.0	1.78	34.9
at 23.93 0.35 8.38 1280 3 7.1	1.78	14.9
Oak + Olive 54.11 0.52 27.99 17.1	1.40	39.2

Appendix E SOUTH SCAPPOOSE CREEK - HYDRAULIC EVALUATION

Scappoose Storm Drain System Master Plan

	Hu	City of	scappoose s at Roady	storm Drai	nage Mast	er Plan Scappoose Cri	eek	
	119	Ru	rlington N	Jorthern Rai	Iroad Brid	ge	ich .	
Roadway Elev	vation	53.40				8°		
Minimum Ro	ad Elev	53.40						
Low Chord		50.70						have a series
Section	10-	Year	50-	Year	100-	Year	500	-Year
No.	Elev	Change	Elev	Change	Elev	Change	Elev	Change
	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
5.900	40.49		41.71	The Party of	42.20	1000	43.21	
		0.20		0.26		0.27		0.31
5.920	40.69		41.97		42.47		43.52	
		0.09		0.12		0.14		0.18
5.925	40.78	1000	42.09		42.61		43.70	
		0.19		0.21		0.21		0.22
5.935	40.97	100	42.30		42.82		43.92	
Total		0.48		0.59		0.62		0.71
ADV CAN				o				in these
0. J		17 (0	u	S Highway 3	30			
Roadway Elev	vation	47.60						
Chord Chord	ad Elev	44.50						
Section	10.	45.20 Voar	50.	Vaar	100	Vaar	500	Vear
No	Flev	Change	Flev	Change	Flev	Change	Flev	Change
110.	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
5.025	(1007	(icer)	(1001)	(icer)	(1001)	(icet)	43.92	(neer)
3.335	40.77	0.02	42.00	0.03	14.04	0.13	10.76	0.37
5 950	40.99	0.02	42 33	0.00	42.95	0.10	44.29	0.07
5.550	10.77	0.30	14.00	0.40	14.70	0.50	, thus	0.10
5 960	41.29	0.00	42.73	0.40	43.45	0.00	44 39	
5.900	11.67	0.21	14.70	0.36	10.10	0.41	11.07	0.59
5 000	41.50	0.2.1	43.00	0.00	43.86	0.41	44.98	0.07
Total	41.50	0.53	40.07	0.79	40.00	1.04	11.70	1.06
3.2.95.300	5/201 1/2	2222 - 12	NACE OF STREET	128-12/16-15	的物质开设的	·····································	SWITT DA	S-MEDUS
		Crown Z	lellerbach	(Private) Lo	gging Roa	d Bridge		
Roadway Elev	vation	47.80						
Minimum Ro.	ad Elev	45.60						
Low Chord		46.50						
Section	10-	Year	50-	Year	100-	rear	500	-rear
No.	Elev	Change	Elev	Change	Elev	Change	Elev	Change
-	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
6.110	42.19		43.71		44.43		45.54	-
		0.03		0.04		0.03		0.04
6.115	42.22	1.000	43.75		44.46		45.58	
1.0		0.02		0.05		0.06		0.35
6.120	42.24	1.1.1.1.1.1.1	43.80		44.52		45.93	
		0.18		0.33		0.42		0.45
6.130	42.42		44.13		44.94		46.38	
CALCULATING								

	Ни	City of draulic Losse	Scappoose s at Roadu	Storm Drai	nage Mast	ter Plan Scappoose Cri	eek	1	
Mine Calendary	119		- III ACOUNT	ing crossings	on oourn c	enprova en	1	and a second	
Roadway Ele Minimum Ro	vation ad Elev	48.50 45.00	Scappoos	se-Vernonia	Highway	12	-		
Low Chord		45.10							
Section	10-	Year 50-Year			100-	-Year	500	-Year	
No.	Elev	Change	Elev	Change	Elev	Change	Elev	Change	
	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	
6.130	42.42	1.1	44.13		44.94	1.00	46.38		
		0.02		0.03		0.26		0.37	
6.135	42.44	T. College	44.16	11111	45.20	10,000	46.75		
		0.20		0.28		0.30		0.35	
6.150	42.64	10.00	44.44	1.000	45.50	1.111	47.10		
		0.22		0.27		0.27		0.18	
6.230	42.86	100	44.71		45.77	1.1	47.28		
Total		0.44		0.58		0.83		0.90	
Server and Conference	122		Talkin Han	ALCONOMICS IN	28161-	TANK IN M	A second second	11.5	
			E.	I. Smith Roy	ıd				
Roadway Ele	vation	47.00	2.	,					
Minimum Ro	ad Elev	45.10							
Low Chord		44.80							
Section	10-	Year	50-	Year	100	-Year	500	500-Year	
No.	Elev	Change	Elev	Change	Elev	Change	Elev	Change	
	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	
6 300	43.31	(1000)	45 14	(icct)	46.06	(rect)	47 44	(1001)	
0.500	40.0X	0.10	10.11	0.05	40.00	-0.02	17.11	0.01	
6 210	42.41	0.10	45 10	0.05	16.04	-0.02	47 45	0.01	
0.310	43.41	0.02	43.17	0.15	40.04	0.01	47.45	0.00	
(10.10	0.02	15.24	0.15	16.05	0.01	17 15	0.00	
6.315	43.43		45.54	0.55	46.05		47.43	0.05	
		0.21		0.57		0.61		0.25	
6.320	43.64		45.91		46.66		47.70		
Total		0.33		0.77		0.60		0.26	
「「「「「「「」」	R. Kenner M.			and the states		S YER MILT.	2012-1	ISN 70 PAR	
			J.	P. West Roa	ıd				
Roadway Ele	vation	48.80							
Minimum Ro	ad Elev	46.00							
Low Chord	_	46.70	-						
Section	10-	Year	50-	Year	100	-Year	500	-Year	
No.	Elev	Change	Elev	Change	Elev	Change	Elev	Change	
	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	
6.750	45.46	1	47.16	1000	47.75	10.2.	48.72		
		0.08		0.05		0.05		0.05	
6.760	45.54	1.1	47.21	1.00	47.80	1.000	48.77		
		0.05		0.67		0.54		0.31	
6.770	45.59		47.88	1000	48.34		49.08	an tel	
		0.41		0.05		0.05	000000	0.04	
6 790	46.00		47.92	0.00	48 30	0.00	49.12	U.U.I	
0.700	40.00	0.54	47.73	0.00	10.37	0.0	47.12	0.40	
Total		0.54		0.77		0.64		0.40	

	Hy	City of draulic Losse	Scappoose s at Roadu	e Storm Drai vay Crossings	nage Mass on South S	ter Plan Scappoose Cri	eek	
Open and			E ./	M. Watts Ro	ad			Lever of
Roadway Elev	vation	56.30						
Minimum Ro	ad Elev	52.40						
Low Chord		51.40						
Section	10-Year		50-Year		100-Year		500-Year	
No.	Elev	Change	Elev	Change	Elev	Change	Elev	Chang
	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
7.430	50.37		51.88		52.38		53.27	
		0.10		0.10		0.15		0.21
7.440	50.47		51.98		52.53		53.48	
		0.03		0.35		0.50		0.71
7.450	50.50		52.33		53.03		54.19	
		0.11		0.19		0.10		0.10
7.460	50.61		52.52		53.13		54.29	
Total		0.24		0.64		0.75		1.02

Data File: SCAPC875.DAT HMVersion: 6.52 HEC2 S/N: 1363000362

HEC-2 WATER SURFACE PROFILES

Version 4.6.2; May 1991

- RUN DATE 18NOV97 TIME 13:50:57 -

XXXXXXX ×× XXXXX XXXXX × × XXXXX × × XXXXX XXXXX ××××× XXXXXXX XXXXXXX XXXX × × ×

111 FULL MICRO-COMPUTER IMPLEMENTATION ***

HAESTAD METHODS 计法计算法 化化学 化合体 化合体 化合体 化合体 化合体 化合体 · (203) 755-1666 37 Brookside Road * Waterbury, Connecticut 06708

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET, SUITE D DAVIS, CALIFORNIA 95616-4687 (916) 756-1104

Run Date: 18NOV97 Run Time: 13:50:57 HMVersion: 6.52

Data File: SCAPC875.DAT

Page 1

THIS RUN EXECUTED 18NOV97 13:50:57

HEC-2 WATER SURFACE PROFILES

Version 4.6.2; May 1991

THIS IS AN ARCHIVAL RUN ALL DATA AND RESULTS ARE SAVED ON UNIT 96

AC HEC-2 PC FILE NAME : SCAPC875.DAT AC INPUT TAPE 400 NAME : SCAPICF7 AC OUTPUT TAPE 314 NAME: SCAPOCF7 AC AC SCAPPOOSE AND SOUTH SCAPPOOSE CREEK R.M. 4.10 TO 10.01 AC COLUMBIA COUNTY, OREGON F.I.S. AC VICINITY OF SCAPPOOSE, OR AC 10-,50-,100-, AND 500-YEAR FLOOD PROFILES AC **REVISED MAY 1987** AC

AC US ARMY ENGINEER DISTRICT, PORTLAND, OREGON AC PLANNING DIVISION, ADVANCE PLANNING BRANCH, FPM & TS SECTION

AC KEN MCGOWEN, F.I.STUDY MANAGER, CIVIL ENG.

AC ORIGINAL COMPUTER FILE BY : OTT WATER ENGINEERS

AC REVIEWED BY:

AC ENGINEERING DIV, H & H BR, HYDROLOGY SECTION AC KEN SODERLIND, HYDRAULIC ENGINEER

AC

AC REVISIONS MADE APRIL 1985 BY SODERLIND

AC REVISIONS MADE NOV AND DEC 86, AND FEB AND MAY 87 BY MCGOWEN

AC X-SEC ADDED: 4.11, 4.82, 5.31, 5.38, 5.55, 5.63, 5.86, 5.89,

AC : 9.60, 9.93, 9.99-10.01 AC X-SEC REVISED: 5.21(5.26), 5.83, 5.98, 6.02, 6.09, 8.77, 9.50,

AC 9.71-9.73, 9.86, 9.98

..... AC

71 SCAPPOOSE AND SOUTH SCAPPOOSE CREEK MILE 4.11 TO 10.01 72 CORPS OF ENGINEERS, FLOOD PLAIN MANANGEMENT SERVICES

SCAPPOOSE CREEK 10-YEAR FLOOD PROFILE 73

J1 ICHECK NINV STRT METRIC HVINS WSEL INO IDIR 0 FQ 2 .00010 21.50 FN J2 NPROF I PLOT PRFVS XSECV XSECH ALLDC IBW CHNIM ITRACE -1 1

VARIABLE CODES FOR SUMMARY PRINTOUT 33

38	1	2	43	13	14	15	55	26	56
25	5	10		38	39	43	1	3	40

41 J5 LPRNT NUM -10 -1 J6 IHLEQ IC	42 4 ASEC 10 COPY SUBDI	53	21 ••••REQUESTED	22 SECTION NUMB	54 ERS****			
J5 LPRNT NUR -10 -1 J6 IHLEQ IO	ISEC 10 COPY SUBDI		···· REQUESTED	SECTION NUMB	ERS			
-10 -1 J6 INLEQ IC	10 COPY SUBDI							
J6 INLEQ IC	OPY SUBDI							
		V STRIDS	RMILE					
1								
NC 0.070	0.070 0	6070 (10)	0.4	(100	1100	1250		
PP 4 11	3470	2210 0120	8300	0110	0120	6250	320	1520
D	X-SPC 1 02 19	21 CHEVEY		9.4	9.5		370	1230
X1 4 11	39	825 89	0	0	0			
GR 34.3	0	11.1 50	12 9	5.4	24 2	20	12 6	95
GR 15.6	100	16.4 200	16.8	245	15.2	300	13.7	376
GR 13.2	400	14.1 500	11.6	600	13.5	200	15.0	758
GR 13.6	772	13.2 78	14.9	800	15.3	825	12 1	828
GR 5.9	832	5.1 84	4.9	858	5.9	821	14.7	890
GR 14.9	900	10.5 961	17.6	987	17.5	1037	16.6	1100
GR 17.2	1200	16.2 1300	14.8	1400	13.9	1500	14.0	1600
GR 15.2	1700	20.8 172	5 25.3	1750	31.4	1800		
ET 4.13				9.1			400	1500
X1 4.13	0		100	100	100		0.2	
NC 0.082	0.082 0	.056 0.3	0.5					
ET 4.48				9.10	9.5		1870	2069
	DOWNSTREAM OF	WEST LANE ROAD)					
X1 4.48	25	1990 2065	1000	1700	1850			
X3 10						16.0	23.5	
GR 30.0	920	24.0 950	22.0	1750	21.0	1780	16.7	1800
GR 12.8	1810	16.9 1811	16.7	1900	16.0	1990	14.7	2005
GR 12.2	2018	11.0 2020	5 9.6	2033	10.5	2048	11.4	2054
GR 12.1	2058	14.4 2063	22.2	2069	22.3	2084	22.4	2100
GR 24.0	2150	24.0 3000	26.0	3070	24.0	3100	30.0	3140
NC		0.5	5 0.9					
ET 4.65				9.10	9.50		1990	2121
X1 4.65	29	1990 2124	650	450	850			
X2				17.2				15
X3 10						25.7	24.5	
GR 40.0	1570	36.0 1660	32.0	1780	30.0	1820	28.0	1890
GR 26.0	1910	24.0 1990	20.0	2005	16.3	2017	14.3	2019
GR 9.3	2035	10.6 204	11.8	2052	13.0	2059	15.3	2065
GR 16.3	2066	18.6 206	22.1	2086	22.2	2113	25.7	2124
GR 24.0	2214	24.0 2414	24.5	2630	25.5	3050	26.0	3130
GR 26.5	3250	28.0 3440	32.0	3540	40.0	3650	0.000	2000

1.0110110.71 -13 64 64 1 80

ige 2

ET 4.66 9.11 X1 4.66 34 2000 2114 70 10 50	2007 2114
ET 4.66 9.11 X1 4.66 34 2000 2114 70 10 50	2007 2114
X1 4 66 34 2000 2114 70 10 50	25.7 24.7
	25.7 24.7
X3 10	
GR 40.0 1570 33.8 1700 30.1 1807 29.6	1834 28.6 1853
GR 28.6 1900 28.6 2000 25.7 2006.7 19.9 20	06.8 16.3 2017
GR 14.3 2019 9.3 2035 10.6 2043 11.8	13.0 2059
GR 15.3 2065 16.3 2066 18.6 2067 22.1	2086 20.0 2107.2
GR 25.7 2107.3 24.7 2114 24.7 2170 24.7	214 24.7 2314
GR 24.6 2372 24.7 2414 24.7 2630 25.5	3050 26.0 3130
GR 26.5 3250 28.0 3440 32.0 3540 40.0	3650
SB 1.5 2.6 24 942.0	2.55 10.0 10.0
FT 4.67 9.11 9.51	2007 2114
WEST LANE ROAD BRIDGE	
x1 4.67 31 31 31	
X2 1 25.7 24.7	15
x3 10	
BT -12 1900 28.6 28.6 2000 30.2 28.6 20	32.6 25.7
BT 2006.8 32.6 25.8 2107.2 32.6 25.8 21	7.3 32.6 25.7
BT 2114 30.3 24.7 2170 28.8 24.7	2214 27.3 24.7
BT 2314 25.0 24.7 2372 24.6 24.6	2414 24.7 24.7
	2007 2114
ET 4.68 9.11	2007 2114
X1 4.68 50 10 50	0.3
N2 0.2 0.4	
0.2 0.4 0.10 6.50	950 1300
V_CPA 3 OF 1971 CHOURY 9.100 0.30	330 1300
Y1 4.92 14 950 1103 850 500 850	
Y2 Y2	15
CP 36 0 300 30 0 350 28 0 390 26 0	670 25 5 800
	951 16.9 960
CP 15.0 061 15.6 985 17.6 994 18.4	1020 19.6 1022
CP 19.1 1011 17.3 1074 16.2 1084 15.4	1094 15.4 1099
CP 21 1 1103 21 9 1118 25 0 1126 25 3	1132 25.1 1143
00 21.1 1103 21.7 110 20.0 1020 20.0 1020	1550 25.5 1560
CR 26.0 1640 26.5 1750 28.0 1950 40.0	2160
NC 0.115 0.085 0.058	
ET 4.90 9.10 7.50	1935 2225
UPSTREAM OF WEST LANE ROAD, X-SEC 5.0 OF 1984 SURVEY	
X1 4.90 29 2023 2067 400 300 400	
X2	15
GR 30.0 1290 28.0 1410 28.0 1690 27.5	1700 26.0 1750
GR 23.5 1800 23.7 1900 21.1 1933 18.0	1953 21.5 1973
GR 21.3 2000 19.4 2023 18.3 2029 16.3	2032 15.9 2040
GR 15.5 2047 15.8 2051 15.8 2058 17.1	2062 18.3 2065
GR 22.7 2067 22.8 2100 22.4 2200 22.7	2300 22.5 2370
GR 26.0 2380 28.0 2500 30.0 2550 40.0	2700

Page 3

Run Date: 18NOV97 Run Time: 13:50:57 HMVersion: 6.52 Data File: SCAPC875.DAT

Run Date: 18NOV97 Run Time: 13:50:57 HMVersion: 6.52 Data File: SCAPC875.DAT

Page 4

ET 4.94 9.10 4.50 1850 2150 NC 0.115 0.085 0.058 9.10 4.50 1780 2080 X1 4.97 30 203 1030 125 105 100 20.0 100 20.0 100 20.0 100 20.0 100 20.0 16.0 20.0 16.0 20.0 16.0 20.0 16.0 20.0 16.0 20.0 16.0 20.0 16.0 20.0 16.0 20.0 16.0 20.0 16.0 20.0 16.0 20.0 16.0 20.0 16.0 20.0 16.0 20.0 16.0 20.0 16.0 17.0 20.0 16.0 17.0 20.0 12.0	NH	4	0.115	2023	0.058	2067	0.085	2200	1.0	2700			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ET	4.94					9.10	4.50		1850	2150		
NC 0.115 0.085 0.058 9.10 6.50 1780 2080 X1 4.97 20 2025 2080 125 175 150 1600 26.0 1600 26.0 1660 26.0 1660 26.0 1660 26.0 1660 26.0 1660 26.0 1660 26.0 1660 26.0 1660 26.0 1660 26.0 1660 26.0 1660 26.0 1660 26.0 1660 26.0 1660 26.0 1660 26.0 1660 26.0 1660 26.0 1660 26.0 1260 17.0 2160 17.0 2160 17.0 2160 17.0 2120 10.0 150 16.0 17.0 2047 68.3 20.0 2025 20.0 2025 10.0 2120 17.0 2047 68.3 20.0 2025 20.0 2025 20.0 2025 20.0 2025 20.0 2025 20.0 20.0	X1	4.94	0	0	0	150	200	200		0.5			
NC 0.085 0.058 9.10 6.50 1780 2080 ET 4.97 20 2022 2080 125 175 50 GR 32.0 1130 10.0 1240 28.0 1300 26.0 1600 26.0 1600 26.0 1600 26.0 1600 26.0 1600 26.0 1600 26.0 1600 26.0 1600 26.0 16.6 2000 17.0 2000 21.0 2000 21.0 2000 21.0 2000 21.0 2000 21.0 2000 21.0 20.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0										Contraction of the second			
FT 4.97 9.10 6.50 1780 2080 X1 4.97 20 2025 2080 125 175 150 100 66.0 1600 66.0 1600 66.0 1600 66.0 1600 66.0 1600 66.0 1600 66.0 1600 66.0 1600 66.0 1600 66.0 1600 66.0 1600 16.0 16.0 1600 16.0 1600 16.0 1600 16.0 166.0 1600 16.0 160.0 17.0 2040 16.0 1200 1200 1200 1200 1200 1200 1200 1200 1200 130 <t< td=""><td>NC</td><td>0.115</td><td>0.085</td><td>0.058</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	NC	0.115	0.085	0.058									
GEOGRAPHICAL FEATURE, X-SECTION FROM ORTHOPHOTO-TOPO COMPAPHICAL FEATURE, X-SECTION FROM ORTHOPHOTO-TOPO CR 2025 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 20200 20200 2020 10 2450 2450 2100 2450 2100 2200 2200 2200 2200 2200 VISTREAM OF GEOGRAPHICAL FEATURE, FROM ORTHOPHOTO-TOPIO 10 2450 2100 200 2025 2000 24.0 2000 24.0 2000 24.0 2000 24.0 2000 24.0 2000 26.0 2200 <th 2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2<="" colspan="2" td=""><td>ET</td><td>4.97</td><td></td><td></td><td></td><td></td><td>9.10</td><td>6.50</td><td></td><td>1780</td><td>2080</td></th>	<td>ET</td> <td>4.97</td> <td></td> <td></td> <td></td> <td></td> <td>9.10</td> <td>6.50</td> <td></td> <td>1780</td> <td>2080</td>		ET	4.97					9.10	6.50		1780	2080
X1 4.97 20 2023 2080 125 175 150 CR 32.0 1130 30.0 1240 28.0 1600 26.0 26.0 26.0 26.0 2010 20.0 2025 19.3 2029 17.3 2032 16.9 2040 26.0 26.0 26.0 26.0 26.0 26.0 2120 40.0 2140 NH 4 0.115 2025 0.058 2075 0.085 2250 1.0 2450 2140 FT 5.00 1250 2250 1.0 2450 17.0 2120 40.0 2120 40.0 2120 40.0 2120 40.0 2120 40.0 2120 40.0 2120 40.0 2120 40.0 2120 220 2000 2025 20.0 2025 20.0 2025 20.0 2026 20.0 2026 20.0 2026 20.0 2026 20.0 2026 20.0 20			GEOGRAPHI	CAL FEATURE	X-SECTION	FROM ORTHOP	OTO-TOPO						
CR 32.0 1130 30.0 1240 28.0 1300 28.0 1600 26.0 1600 CR 26.0 2010 20.0 2029 17.3 2032 16.9 2040 CR 26.0 2070 30.0 2080 32.0 2085 34.0 2120 40.0 2140 ET 5.00 0 225 0.058 2075 0.085 2250 1.0 2450 ET 5.00 24 2025 2120 130 </td <td>X1-</td> <td>4.97</td> <td>20</td> <td>2025</td> <td>2080</td> <td>125</td> <td>175</td> <td>150</td> <td></td> <td></td> <td></td>	X1-	4.97	20	2025	2080	125	175	150					
CR 26.0 2010 20.0 2025 19.3 2003 17.3 2012 16.9 2040 CR 16.5 2047 16.8 2051 16.8 2053 18.1 2060 19.3 2065 GR 20.0 2070 30.0 2080 32.0 2085 34.0 2120 40.0 2140 NH 4 0.115 2025 0.058 2075 9.085 2250 1.0 2450 FT 5.00 UPSTREAM OF GEOCRAPHICAL FEATURE, FROM ORTHOPHOTO-TONO 130 130 130 130 130 130 130 24.0 20047 68.0 20.0 1203 24.0 20047 68.0 20.0 2055 20.0 2012 16.0 2010 24.0 20047 68.0 20.0 2065 20.0 2047 68.0 20.0 2065 20.0 20130 2130 24.0 2100 24.0 21047 16.2 2047 2047	CR	32 0	1130	30.0	1240	28.0	1300	28.0	1600	26.0	1660		
GR 12.5 20.0 12.5 20.0 12.5 20.0 12.5 20.0 12.5 20.0 12.5 20.0 12.5 20.0 12.5 20.0 2	CP	26.0	2010	20.0	2025	10 3	2029	17 3	2032	16 9	2040		
OR 10:3 2037 10:3 2036 12:4 2030 12:3 2030 12:3 2030 12:3 2030 12:3 2030 12:3 2030 12:3 2030 12:3 2030 12:3 2030 12:3 2030 12:3 2030 12:3 2030 12:3 21:0 12:3 21:0 12:3 21:0 12:3 21:0 2	00	36.6	2010	36.0	2051	16.0	2059	10.1	2060	10.2	2040		
CR 20:0 20:0 20:0 32:0 20:85 34:0 2120 40:0 2140 NH 4 0.115 2025 0.058 2075 0.085 2250 1.0 240:0 2120 40:0 2120 40:0 2120<	UK.	10.5	2047	10.8	2051	10.8	2058	18.1	2000	19.3	2065		
NH 4 0.115 2025 0.058 2075 0.085 2250 1.0 2450 X1 5.00 24 2025 2120 130 130 0 <td>CR</td> <td>20.0</td> <td>2070</td> <td>30.0</td> <td>2080</td> <td>32.0</td> <td>2085</td> <td>34.0</td> <td>2120</td> <td>40.0</td> <td>2140</td>	CR	20.0	2070	30.0	2080	32.0	2085	34.0	2120	40.0	2140		
ET 5.00 UPSTREAM OF GEOGRAPHICAL FEATURE, FROM ORTHOPHOTO-TOPO 1730 2120 X1 5.00 14 2025 2120 130 <	2214	4	0.115	2025	0.058	2075	0.085	2250	1.0	2450			
No. UPSTREAM OF GEOCRAPHICAL FEATURE, PROM ORTHOPHOTO-TOPO 100 1100 1100 X1 5.00 24 2025 2120 130 17.6 2040 17.2 2047 50 200 2055 20.0 2075 50 2120 34.0 2120 34.0 2130	200	5 00					9.10			1730	2120		
X1 5.00 220 2025 2120 130 130 GR 32.0 1020 30.0 1210 28.0 1560 26.0 1500 24.0 2000 GR 17.5 2051 17.5 2058 18.8 2060 20.0 2025 20.0 2017 64.0 2012 2017 67.6 2040 17.2 2047 GR 17.5 2051 17.5 2058 18.8 2060 20.0 2055 20.0 2075 GR 32.0 2140 32.0 2250 32.5 2400 40.0 24.0 2130 FT 5.21 5.20 5.10 6.50 1960 2130 GR 34.0 600 32.0 720 31.0 800 30.0 1800 36.0 1330 GR 29.3 1900 27.6 2000 27.2 2003 25.5 2093 22.3 2106 G		5.00	IIDCTREAM	OF GROCEAPH	CAL PRATING	PROM ORTH	0000-7000						
AR 5:00 1025 2:00 12:00 2:00 15:00 2:00 15:00 2:00 15:00 2:00 15:00 2:00 15:00 2:00 15:00 2:00 15:00 2:00 15:00 2:00 15:00 2:00 15:00 2:00 15:00 2:00 15:00 2:00 15:00 2:00 15:00 2:00 <th2:00< th=""> <th2:00< th=""> <th2:00< th=""></th2:00<></th2:00<></th2:00<>	**	5 00	24	2025	2120	130	130	130					
DR 52.0 1000 1	00	33.00	1020	20.0	1220	28.0	1560	26 0	1500	24.0	2000		
GR 20:0 2	OR OR	34.0	2020	30.0	1630	40.0	2000	20.0	2010	10.0	2000		
GR 17.5 2051 17.5 2058 18.8 2060 20.0 2065 20.0 2075 GR 32.0 2140 32.0 2250 32.5 2400 40.0 2120 34.0 2130 NH 4 1.0 1500 .087 2003 .058 2111 .087 2520 2130 K -SEC 5.35 OF 1984 SURVEY 9.10 6.50 1960 2130 R 34.0 600 32.0 2130 31.0 800 30.0 1880 18.6 206.0 1960 2130 GR 34.0 600 32.0 2111 1000 1100 100 100 1880 30.0 1880 GR 32.0 1500 30.0 1620 30.2 1700 30.3 1751 30.0 1800 GR 32.4 2109 26.5 2111 26.6 2121 23.3 2159 28.0 2175 <t< td=""><td>GR</td><td>20.0</td><td>2025</td><td>20.0</td><td>2029</td><td>18.0</td><td>2032</td><td>17.6</td><td>2040</td><td>17.2</td><td>2047</td></t<>	GR	20.0	2025	20.0	2029	18.0	2032	17.6	2040	17.2	2047		
GR 22.0 2100 24.0 2105 30.0 2112 34.0 2120 34.0 2130 GR 32.0 2140 32.0 2250 32.5 2400 40.0 22450 34.0 2130 NH 4 1.0 1500 .087 2003 .058 2111 .087 2520 ET 5.21 X-SEC 5.35 OF 1984 SURVEY 9.10 6.50 1960 2130 GR 34.0 600 32.0 720 31.0 800 30.0 1080 36.0 1330 GR 23.2 1500 30.0 1620 30.2 1700 30.3 1751 30.0 1800 GR 29.3 1900 27.6 2000 27.2 2003 25.5 2093 24.1 2020 GR 23.4 2109 26.5 2111 26.6 2121 23.3 2159 28.0 2175 GR 36.2 2187	GR	17.5	2051	17.5	2058	18.8	2060	20.0	2065	20,0	2075		
GR 32.0 2140 32.0 2250 32.5 2400 40.0 2450 NH 4 1.0 1500 .087 2003 .058 2111 .087 2520 K-SEC 5.35 OF 1984 SURVEY 9.10 6.50 1960 2130 CR 34.0 600 32.0 720 31.0 800 30.0 1080 36.0 1330 GR 32.0 1500 30.0 1620 30.2 1700 30.3 1751 30.0 1800 GR 22.6 2044 23.7 2068 23.3 2085 22.6 2093 22.3 2106 GR 38.2 2187 38.4 2194 38.3 2198 36.0 2159 28.0 2175 GR 34.0 1600 34.0 1490 35.0 1530 34.0 2480 GR 34.2 19 2000 2085 630 530 560 760	GR	22.0	2100	24.0	2105	30.0	2112	34.0	2120	34.0	2130		
NH 4 1.0 1500 .087 2003 .058 2111 .087 2520 ET 5.21 X-SEC 5.35 OF 1984 SURVEY 9.10 6.50 1960 2130 X1 5.21 31 2003 2111 1000 1100 100 GR 34.0 600 32.0 720 31.0 800 30.0 1080 36.0 1330 GR 22.0 1500 30.0 1620 30.2 1700 30.3 1751 30.0 1800 GR 22.6 2044 23.7 2068 23.3 2085 22.6 2093 22.3 2106 GR 38.2 2187 38.4 2194 38.3 2198 36.0 2230 36.0 2480 GR 36.0 1400 34.0 1450 34.0 1490 35.0 1530 34.0 1600 GR 36.0 1400 34.0 1450 32.5 <td>GR</td> <td>32.0</td> <td>2140</td> <td>32.0</td> <td>2250</td> <td>32.5</td> <td>2400</td> <td>40.0</td> <td>2450</td> <td></td> <td></td>	GR	32.0	2140	32.0	2250	32.5	2400	40.0	2450				
All Construction Construction	3754		1.0	1500	087	2003	058	2111	087	2520			
X-SEC 5.35 OF 1984 SURVEY 7.10 0.10 100 100 100 1100 X1 5.21 31 2003 2111 1000 1100 1100 GR 34.0 600 32.0 720 31.0 800 30.0 1080 36.0 1330 GR 32.0 1500 30.0 1620 30.2 1700 30.3 1751 30.0 1800 GR 22.6 2044 21.7 2068 21.3 2085 22.6 2093 22.3 2106 GR 38.2 2187 38.4 2194 38.3 2198 36.0 2230 36.0 2480 GR 36.0 1200 2085 630 530 560 34.0 1600 2085 K1 5.32 19 2000 2085 630 530 560 34.0 1600 GR 36.0 1400 34.0 1450 34.0 1600	E-m	6 23		1000		2000	9 10	6 50		1960	2130		
X1 5.21 31 2000 2111 1000 1100 1100 GR 34.0 600 32.0 720 31.0 800 30.0 1080 36.0 1330 GR 32.0 1500 30.0 1620 30.2 1700 30.3 1751 30.0 1800 GR 22.6 2044 23.7 2068 23.3 2085 22.6 2093 22.3 2106 GR 23.4 2109 26.5 2111 26.6 2121 23.3 2155 2003 22.3 2106 GR 38.2 2187 38.4 2194 38.3 2198 36.0 2230 36.0 2480 GR 34.0 1800 34.0 1400 34.0 1490 35.0 1530 34.0 1600 GR 34.0 1810 32.5 1850 32.5 2000 32.0 2005 30.0 2010	61	3.44	V-000 5 1	5 AP 1994 C	TRUPY		3.40	0.50		1700	****		
A1 5.21 51 2003 2111 1000 <th< td=""><td>~ 1</td><td>6 31</td><td>A-360 3.3</td><td>2003</td><td>2111</td><td>1000</td><td>1100</td><td>1100</td><td></td><td></td><td></td></th<>	~ 1	6 31	A-360 3.3	2003	2111	1000	1100	1100					
GR 32.0 100 32.0 120 31.0 1000 30.0 1000 20.	00	3.44	100	2003	200	21.0	200	20.0	1000	36.0	1220		
GR 32.0 1500 30.0 1620 30.2 1700 30.3 1751 30.0 1800 GR 29.3 1900 27.6 2000 27.2 2003 25.5 2009 24.1 2020 GR 23.4 2109 26.5 2111 26.6 2121 23.3 2159 28.0 2175 GR 38.2 2177 38.4 2194 38.3 2198 36.0 2230 36.0 2480 GR 34.0 2550 9.10 3.50 1930 2085 X-SEC FROM TOPO MAP 9.10 3.50 1530 34.0 1600 GR 34.0 1810 32.5 1850 32.5 2000 32.0 2055 30.0 2010 GR 34.0 1810 32.5 1850 32.5 2000 32.0 2005 30.0 2010 GR 34.0 1810 32.5 1850 32.5 2000 32.0 2005 30.0 2085	GX	34.0	600	32.0	120	31.0	800	30.0	1080	30.0	1330		
GR 29.3 1900 27.6 2000 27.2 2003 25.5 2009 24.1 2020 GR 22.6 2044 23.7 2068 23.3 2085 22.6 2093 22.3 2106 GR 23.4 2109 26.5 2111 26.6 2121 23.3 2159 28.0 2175 GR 38.2 2187 38.4 2194 38.3 2198 36.0 2230 36.0 2480 GR 44.0 2520	GR	32.0	1500	30.0	1620	30.2	1700	30.3	1751	30.0	1800		
GR 22.6 2044 23.7 2068 23.3 2085 22.6 2093 22.3 2106 GR 23.4 2109 26.5 2111 26.6 2121 23.3 2159 28.0 2175 GR 38.2 2187 38.4 2194 38.3 2198 36.0 2230 36.0 2480 GR 44.0 2520 x-sec FROM TOPO MAP 9.10 3.50 1930 2085 K 5.32 y 2000 2085 630 530 560	GR	29.3	1900	27.6	2000	27.2	2003	25.5	2009	24.1	2020		
GR 23.4 2109 26.5 2111 26.6 2121 23.3 2159 28.0 2175 GR 38.2 2187 38.4 2194 38.3 2198 36.0 2230 36.0 2480 GR 44.0 2520 9.10 3.50 1930 2085 ET 5.32 9.10 3.50 1930 2085 X-SEC FRON TOPO MAP 9.10 3.50 1530 34.0 1600 GR 36.0 1400 34.0 1450 32.5 2005 30.0 2010 GR 36.0 1400 34.0 1450 32.5 2000 32.0 2005 30.0 2010 GR 38.0 2130 40.0 2145 44.0 2150 45.0 2200 2005 30.0 2085 GR 38.0 2130 40.0 2145 44.0 2150 45.0 2200 2005 String and anoneree and ano	GR	22.6	2044	23.7	2068	23.3	2085	22.6	2093	22.3	2106		
GR 38.2 2187 38.4 2194 38.3 2198 36.0 2230 36.0 2480 GR 44.0 2520 9.10 3.50 2130 20.0 2085 ST 5.32 9.10 3.50 1930 2085 X-SEC FROM TOPO MAP 9.10 3.50 1930 2085 X1 5.32 19 2000 2085 630 530 560 GR 36.0 1400 34.0 1490 35.0 1530 34.0 1600 GR 36.0 2035 23.3 2050 24.0 2065 30.0 2005 30.0 2010 GR 38.0 2130 40.0 2145 44.0 2150 45.0 2200 ET 5.38 25 1980 2105 32.0 34.0 1350 37.0 1380 GR 36.0 1510 36.0 1600 38.0 1700 36.0	GR	23.4	2109	26.5	2111	26.6	2121	23.3	2159	28.0	2175		
GR 44.0 2520 NC 0.080 0.087 0.045 9.10 3.50 1930 2085 ET 5.32 X-SEC FROM TOPO MAP 9.10 3.50 1530 34.0 1600 GR 36.0 1400 34.0 1450 34.0 1490 35.0 1530 34.0 1600 GR 36.0 1810 32.5 2000 32.5 2000 32.0 2055 30.0 2010 GR 24.0 2035 23.3 2050 24.0 2065 30.0 2075 36.0 2085 GR 38.0 2130 40.0 2145 44.0 2150 45.0 2200 2105 ET 5.38 S 1980 2105 320 340 330 36.0 1350 37.0 1380 GR 36.0 1510 36.0 1600 38.0 1700 36.0 1770 37.0 1380	GR	38.2	2187	38.4	2194	38.3	2198	36.0	2230	36.0	2480		
NC 0.080 0.087 0.045 9.10 3.50 1930 2085 X1 5.32 19 2000 2085 630 530 560 1930 2085 GR 36.0 1400 34.0 1450 34.0 1490 35.0 1530 34.0 1600 GR 36.0 1810 32.5 2000 2065 30.0 2010	GR	44.0	2520		10000	1000							
NC 0.087 0.045 9.10 3.50 1930 2085 ET 5.32 x-SEC FROM TOPO MAP 9.10 3.50 1930 2085 X1 5.32 19 2000 2085 630 530 560 GR 36.0 1400 34.0 1450 34.0 1490 35.0 1530 34.0 1600 GR 34.0 1810 32.5 1850 32.5 2000 2205 30.0 2010 GR 24.0 2035 23.3 2050 24.0 2065 30.0 2075 36.0 2085 GR 38.0 2130 40.0 2145 44.0 2150 45.0 2200 2005 ET 5.38 X-SEC FROM TOPO MAP, DOWNSTREAM OF CONFLUENCE 340 330 330 330 330 330 330 330 330 34.0 1350 37.0 1380 GR 36.0 1510 36.0 <													
ET 5.32 9.10 3.50 1930 2085 X1 5.32 19 2000 2085 630 530 560 GR 36.0 1400 34.0 1450 34.0 1490 35.0 1530 34.0 1600 GR 34.0 1810 32.5 1850 32.5 2000 32.0 2005 30.0 2010 GR 24.0 2035 23.3 2050 24.0 2065 30.0 2000 2085 GR 38.0 2130 40.0 2145 44.0 2150 45.0 2200 2005 ET 5.38 X-SEC FROM TOPO MAP, DOWNSTREAM OF CONFLUENCE 9.10 6.5 1900 2105 X1 5.38 25 1980 2105 32.0 340 330 300 GR 36.0 1510 36.0 1600 38.0 1700 36.0 1770 37.0 1380 GR 36.0 1510 36.0 1600 38.0 1700 36.0 1770 37.0 1380 GR 36.0 1870 34.0 1930 35.0 1980 34.0 2000 32.0 <td< td=""><td>NC</td><td>0.080</td><td>0.087</td><td>0.045</td><td></td><td></td><td></td><td></td><td></td><td>1030</td><td>0005</td></td<>	NC	0.080	0.087	0.045						1030	0005		
X1 5.32 19 2000 2085 630 530 560 GR 36.0 1400 34.0 1450 34.0 1490 35.0 1530 34.0 1600 GR 34.0 1810 32.5 1850 32.5 2000 32.0 2005 30.0 2010 GR 24.0 2035 23.3 2050 24.0 2065 30.0 2075 36.0 2085 GR 38.0 2130 40.0 2145 44.0 2150 45.0 2200 2005 ET 5.38	ST	5.32	M 000 000				9.10	3.50		1930	2085		
X1 5.32 19 2000 2085 630 530 560 GR 36.0 1400 34.0 1450 34.0 1490 35.0 1530 34.0 1600 GR 34.0 1810 32.5 1850 32.5 2000 32.0 2005 30.0 2010 GR 24.0 2035 23.3 2050 24.0 2065 30.0 2075 36.0 2085 GR 38.0 2130 40.0 2145 44.0 2150 45.0 2200 2005			X-SEC FRO	M TOPO MAP		100	* * *						
GR 36.0 1400 34.0 1450 34.0 1490 35.0 1530 34.0 1600 GR 34.0 1810 32.5 1850 32.5 2000 32.0 2005 30.0 2010 GR 38.0 2130 40.0 2145 44.0 2150 45.0 2200 2005 30.0 2010 ET 5.38 X-SEC FROM TOPO MAP, DOWNSTREAM OF CONFLUENCE 9.10 6.5 1900 2105 X1 5.38 25 1980 2105 320 340 330 37.0 1380 GR 36.0 1510 36.0 1600 38.0 1700 36.0 1770 37.0 1380 GR 36.0 1510 36.0 1930 35.0 1980 34.0 2000 32.0 2000 2005 GR 36.0 1510 36.0 1600 38.0 1700 36.0 1770 37.0 1380 GR 36.0 1870 34.0 1930 35.0 1980 34.0 </td <td>XI</td> <td>5.32</td> <td>19</td> <td>2000</td> <td>2085</td> <td>630</td> <td>530</td> <td>500</td> <td></td> <td></td> <td></td>	XI	5.32	19	2000	2085	630	530	500					
GR 34.0 1810 32.5 1850 32.5 2000 32.0 2005 30.0 2010 GR 24.0 2035 23.3 2050 24.0 2065 30.0 2075 36.0 2085 GR 38.0 2130 40.0 2145 44.0 2150 45.0 2200 2005 30.0 2085 ET 5.38 S 25 1980 2105 320 340 330 2105 2100 2105 2105 21	GR	36.0	1400	34.0	1450	34.0	1490	35.0	1530	34.0	1600		
GR 24.0 2035 23.3 2050 24.0 2065 30.0 2075 36.0 2085 GR 38.0 2130 40.0 2145 44.0 2150 45.0 2200 2105 </td <td>GR</td> <td>34.0</td> <td>1810</td> <td>32.5</td> <td>1850</td> <td>32.5</td> <td>2000</td> <td>32.0</td> <td>2005</td> <td>30.0</td> <td>2010</td>	GR	34.0	1810	32.5	1850	32.5	2000	32.0	2005	30.0	2010		
GR 38.0 2130 40.0 2145 44.0 2150 45.0 2200 ET 5.38	GR	24.0	2035	23.3	2050	24.0	2065	30.0	2075	36.0	2085		
ET 5.38 9.10 6.5 1900 2105 X1 5.38 25 1980 2105 320 340 330 GR 41.0 900 40.0 1050 39.0 1250 38.0 1350 37.0 1380 GR 36.0 1510 36.0 1600 38.0 1700 36.0 1770 37.0 1840 GR 36.0 1870 34.0 1930 35.0 1980 34.0 2000 32.0 2030 GR 30.0 2040 26.0 2050 25.0 2060 24.5 2070 25.0 2030 GR 26.0 2080 30.0 2005 25.0 2060 24.5 2070 25.0 2077 GR 26.0 2080 30.0 2105 44.0 2110 45.0 2150	GR	38.0	2130	40.0	2145	44.0	2150	45.0	2200				
X-SEC FROM TOPO MAP, DOWNSTREAM OF CONFLUENCE 340 330 X1 5.38 25 1980 2105 320 340 330 GR 41.0 900 40.0 1050 39.0 1250 38.0 1350 37.0 1380 GR 36.0 1510 36.0 1600 38.0 1700 36.0 1770 37.0 1840 GR 36.0 1870 34.0 1930 35.0 1980 34.0 2000 32.0 2030 GR 30.0 2040 26.0 2050 25.0 2060 24.5 2070 25.0 2037 GR 26.0 2080 30.0 2095 40.0 2105 44.0 2110 45.0 2150	-	5 19					9.10	6.5		1900	2105		
X1 5.38 25 1980 2105 320 340 330 GR 41.0 900 40.0 1050 39.0 1250 38.0 1350 37.0 1380 GR 36.0 1510 36.0 1600 38.0 1700 36.0 1770 37.0 1840 GR 36.0 1870 34.0 1930 35.0 1980 34.0 2000 32.0 2030 GR 30.0 2040 26.0 2050 25.0 2060 24.5 2070 25.0 2077 GR 26.0 2080 30.0 2095 40.0 2110 45.0 2150		3.30	Y-980 000	W TOPO MAP	DOGOCTOPAN	OF CONSTITUTES	2110	0.5		*****	****3		
A1 5.50 25 1980 2105 320 340 330 GR 41.0 900 40.0 1050 39.0 1250 38.0 1350 37.0 1380 GR 36.0 1510 36.0 1600 38.0 1700 36.0 1770 37.0 1380 GR 36.0 1870 34.0 1930 35.0 1980 34.0 2000 32.0 2030 GR 30.0 2040 26.0 2050 25.0 2060 24.5 2070 25.0 2077 GR 26.0 2080 30.0 2095 40.0 2105 44.0 2110 45.0 2150	~	6 30	A-SEC PRU	10PO BAP,	2106	OF CONFLOEN	340	330					
GR 41.0 900 40.0 1050 39.0 1250 38.0 1350 37.0 1380 GR 36.0 1510 36.0 1600 38.0 1700 36.0 1770 37.0 1840 GR 36.0 1870 34.0 1930 35.0 1980 34.0 2000 32.0 2030 GR 30.0 2040 26.0 2050 25.0 2060 24.5 2070 25.0 2077 GR 26.0 2080 30.0 2095 40.0 2105 44.0 2110 45.0 2150	AL	5.38	45	1980	2105	320	340	330	1244		1200		
GR 36.0 1510 36.0 1600 38.0 1700 36.0 1770 37.0 1840 GR 36.0 1870 34.0 1930 35.0 1980 34.0 2000 32.0 2030 GR 30.0 2040 26.0 2050 25.0 2060 24.5 2070 25.0 2077 GR 26.0 2080 30.0 2095 40.0 2110 45.0 2150	GR	41.0	900	40.0	1050	39.0	1250	38.0	1350	37.0	1380		
GR 36.0 1870 34.0 1930 35.0 1980 34.0 2000 32.0 2030 GR 30.0 2040 26.0 2050 25.0 2060 24.5 2070 25.0 2077 GR 26.0 2095 40.0 2105 44.0 2110 45.0 2150	GR	36.0	1510	36.0	1600	38.0	1700	36.0	1770	37.0	1840		
GR 30.0 2040 26.0 2050 25.0 2060 24.5 2070 25.0 2077 GR 26.0 2080 30.0 2095 40.0 2105 44.0 2110 45.0 2150	GR	36.0	1870	34.0	1930	35.0	1980	34.0	2000	32.0	2030		
GR 26.0 2080 30.0 2095 40.0 2105 44.0 2110 45.0 2150	GR	30.0	2040	26.0	2050	25.0	2060	24.5	2070	25.0	2077		
	GR	26.0	2080	30.0	2095	40.0	2105	44.0	2110	45.0	2150		

Run Date: 18MOV97 Run Time: 13:50:57 HMVersion: 6.52 Data File: SCAPC875.DAT

	0117		2003	2053	2095	2133	60.		10107		15	1500	1650	1760	1940	2050	2150			1160			940	1035	1100	1300	0.07	2060				1828	2004	2031	2075	2800		2010		1580	1945	1990		
	0161		33.9	28.8	25.4	52.2	2075		0601			38.5	34.0	36.0	36.0	25.5	45.0			980			38.0	27.0	37.0	45.0	2075	1420	A		42.0	40.5	37.8	27.4	42.6	45.0		1940		53.4	38.0	32.0		
			2000	2050	2082	2119	.035					1400	1610	1735	1900	2045	2075	2750					750	1030	1060	1240	0.040				37.8	1800	2000	2024	2060	2770				1570	1930	1980	2050	
		280	34.2	30.8	25.8	41.0	2020	~ ~ ~	00.5	640		38.5	35.0	34.0	37.0	27.0	44.0	3360		5.50		410	40.0	30.0	36.0	44.0	2004			1060		38.0	39.4	27.7	42.0	40.0		9.10	180	38.2	42.0	28.0	44.0	
	N CCIEDOUSE CK	280	1997	2032	2072	2102	.075		01.4	KATTWOD LAD	2	1250	1590	1720	1850	2035	2070	3360		9.10	38 CK	400	590	1025	1050	1230	0.07	0 10	~ * * *	950		1770	1998	2018	2052	2500		9.10	180	1540	1850	1975	2020	
	au anou a	260	34.3	32.2	26.0	28.6	1760		0 UN	500 0. 0	2007	39.0	36.0	33.0	36.0	29.0	40.0	4450			SCAPPOOS	420	42.0	32.0	30.0	40.0	1900			1140		38.0	39.8	28.2	41.3	40.0			170	38.2	42.0	27.5	44.0	
	NEDTATETY NO OF	2102	1800	2029	2063	2101	.040		N DWVG DOVGAN	ALKUDD BUTH N.	~~~	1050	1570	1700	1830	2030	2065	3360			ACROSS JUST S.	1060	500	1020	1045	1225	1.0			2060		1755	1988	2014	2044	2400			2005	1530	1810	1970	2010	
0.040	19841 TW	2003	38.0	29.7	26.4	27.6	1590		ann onos	and mar.	~~~~	40.0	38.0	32.5	36.0	32.0	29.0	2900	0.035		TOPO MAP.	1000	43.0	34.0	27.0	38.0	1828	2800	120011	2004		40.0	37.2	28.2	36.6	41.0	0.050		1930	53.4	44.0	28.0	42.0	
0.08	V-CDC & A	20.00	1400	2008	2056	2100	.08		N CDA DOAN	A-BEC FROM	00	1000	1550	1670	1800	2020	2055	1930	0.08		X-SEC PROM	20	665	1000	1040	1220	0.065	1.0	V. CDA K Q	A-260 2.0		1740	1900	2009	2038	2100	0.08	2.542	19	1400	1790	1960	2005	
0.06	29.0	17.5	38.5	30.8	27.6	27.5	s	2150	0.00	6 66		41.0	38.5	33.0	37.0	34.0	27.0	2	0.060	5.63		5.63	45.0	36.0	26.0	37.0	9	2400	20.0	5 81	10	52.7	37.0	33.2	33.2	41.0	0.08	5.86	5.86	53.4	53.4	32.0	40.0	
NC	1 12	43	25	CR S	GR	GR	MN	ž	12	**	X2	80	GR	GR	CS S	GR	GR	5	NC	13		X1	GR	CR CR	C.S	GR	NIN	EN S	10	1.X	XX	GR	GR	GR	GR	GR	NC	12	X1	GR	GR	GR	GR	

Page 5
X-SEC RAY ONCY TO ALLOS A PATILATY ALLASY ANDER 1370 X-SEC RAY ONCY TON ALL CHILE AND ALLASY ANDER 1350 100 151 151 200 0.01 M. M. HIGH PATILATY ALLASY 101 151 151 150 150	FROM ODDT TOPO AND CREEK PROFIL ED 175 FT D/S FROM B.N. R/R AT HI ED 175 FT D/S FROM B.N. R/R AT HI ED 1975 531.4 1530 38 531.4 1590 1975 34 1975 0.057 0.5 40 0 0.057 0.5 40 1995 2015 40 40 0 0.057 0.5 40 0 0.057 0.5 40 0 1995 2065 40 0 1995 2065 40 0 1995 2065 40 0 10.2 2100 31 0 1959 2100 31 0 531.4 1480 40 1959 2100 31 40 0 531.4 1480 40 1959 2100 2012 40 190.0 2012 205	MAP #31429, MAR	CH 1976			
20 1975 200 110 140 150 <th>1975 2030 1975 2030 44.0 1930 44.0 1930 44.0 2015 40.0 1975 40.0 1975 40.0 1975 40.0 1975 40.0 2015 40.0 2015 40.0 2015 40.0 2015 53.4 1530 53.4 1530 53.4 1530 53.4 1530 53.4 1530 53.4 1530 53.4 1530 53.4 1530 53.4 1530 53.4 2100 53.4 1480 53.4 1480 53.4 2012 53.5 2051 53.6 2052 53.6 2052</th> <th>CH POINT IN CHAN</th> <th>THALMED</th> <th></th> <th></th> <th></th>	1975 2030 1975 2030 44.0 1930 44.0 1930 44.0 2015 40.0 1975 40.0 1975 40.0 1975 40.0 1975 40.0 2015 40.0 2015 40.0 2015 40.0 2015 53.4 1530 53.4 1530 53.4 1530 53.4 1530 53.4 1530 53.4 1530 53.4 1530 53.4 1530 53.4 1530 53.4 2100 53.4 1480 53.4 1480 53.4 2012 53.5 2051 53.6 2052 53.6 2052	CH POINT IN CHAN	THALMED			
000 33.4 1300 36.2 1340 36.2 1340 36.2 1340 36.2 1340 36.2 1340 36.2 <th< th=""><th>55.4 1530 55.4 1530 65.4 1935 40.0 1995 2015 2015 40.0 1995 40.0 2015 40.0 2015 40.0 2015 40.0 2015 53.4 1530 53.4 1530 53.4 1530 53.4 1530 53.4 1530 53.4 1530 53.4 1530 53.4 1530 53.4 1530 53.4 1540 53.4 2100 53.4 1480 53.4 1480 53.4 1480 53.4 2100 53.4 2051 53.5 2052 53.6 2052</th><th>30 140</th><th>150</th><th></th><th></th><th></th></th<>	55.4 1530 55.4 1530 65.4 1935 40.0 1995 2015 2015 40.0 1995 40.0 2015 40.0 2015 40.0 2015 40.0 2015 53.4 1530 53.4 1530 53.4 1530 53.4 1530 53.4 1530 53.4 1530 53.4 1530 53.4 1530 53.4 1530 53.4 1540 53.4 2100 53.4 1480 53.4 1480 53.4 1480 53.4 2100 53.4 2051 53.5 2052 53.6 2052	30 140	150			
000 0.05 <th0< td=""><td>32.0 1995 2015 40.0 4 1995 2.057 0.55 40.0 4 1995 2.055 2.055 40.0 53.4 1530 2015 2.05 40.0 53.4 1530 2.055 2.0 40.0 53.4 1530 2.0011 2.0 40.0 53.4 1250 2.0011 3.0 2.000 3.0 53.4 1959 2.100 2.100 3.0 3.0 3.0 3.0 3.0 2.001 3.0</td><td>1540</td><td>38.2</td><td>1570</td><td>20.00</td><td>1960</td></th0<>	32.0 1995 2015 40.0 4 1995 2.057 0.55 40.0 4 1995 2.055 2.055 40.0 53.4 1530 2015 2.05 40.0 53.4 1530 2.055 2.0 40.0 53.4 1530 2.0011 2.0 40.0 53.4 1250 2.0011 3.0 2.000 3.0 53.4 1959 2.100 2.100 3.0 3.0 3.0 3.0 3.0 2.001 3.0	1540	38.2	1570	20.00	1960
310 31.0 3013 4010 3010 41.0 2015 51.0 2100	32.0 32.0 2015 4 1995 2.057 0.55 4 1995 2.055 0.5 53.4 1530 2.055 0.5 53.4 1530 2.055 0.5 53.4 1530 2.011 3.0 53.4 1.955 2.001 3.0 53.4 1.956 2.100 3.0 53.4 1.956 2.100 3.0 53.4 1.956 2.100 3.0 38.0 2.100 2.100 3.0 38.0 2.056 3.0 2.056	1990	12.0	2000	0 11	2005
0.09 0.057 0.5 0.9 100 9.10 9	0 0.057 0.5 4 1995 2065 53.4 1530 33 50.2 50.14 1530 50.2 2061 33 50.2 2011 34 50.2 2011 34 50.2 2011 34 50.2 2011 34 50.2 2011 34 50.2 2100 34 51.4 1480 34 53.4 1460 34 53.4 1460 34 53.4 1480 34 50.0 2100 34 53.4 1480 34 50.0 2012 24 38.0 2056 24	.0 2030	44.0	2035	52.0	2100
24 1395 505 50 9.10 9.10 9.10 1370 2055 1393 10.5 1390 10.5 1390 1370 1370 2055 1393 10.5 2010 10.0 2015 100 210	4 1995 2065 53.4 1530 33 40.5 1940 34 30.7 2011 36 30.7 2011 36 44.0 2100 34 23.4 1480 34 30.7 2100 34 23.4 1480 34 33.0.0 2100 34 33.0.0 2100 34 33.0.0 2100 34 33.0.0 2012 2100 33.0.0 2012 2012 38.0 2012 2056 40 2056 44	6.				
24 1995 205 50 100 60 1400 51.4 1530 19.0 150.0 51.4 150.0 51.4 150.0 51.4 150.0 51.4 150.0 50.0<	4 1995 2065 53.4 1530 33 9 50.2 1940 33 9 30.2 1940 33 5 30.2 2011 30 5 30.2 2011 30 5 30.2 2011 30 5 30.2 2100 31 6 44.0 2100 31 5 30.0 2100 31 6 30.0 2100 31 5 30.0 2100 31 5 30.0 2100 44 5 2100 2100 44 5 30.0 2100 44 5 30.0 2012 44 5 30.0 2012 44	9.10	9.10		1970	2065
1400 51.4 1310 39.0 1540 39.1 1570 59.4 1560 59.4 1560 59.4 1560 59.4 1560 59.4 2000 59.4 2000 59.4 2000 59.4 2000 59.4 2000 59.4 2000 59.4 2000 59.4 2000 59.4 2000 59.4 2000 59.4 2000 2000 59.4 2000 <td< td=""><td>53.4 1530 33 60.5 40.5 1530 33 50.2 2011 34 34 50.2 2011 34 34 50.2 2011 34 34 51.4 2100 2100 33 53.4 1480 2100 34 53.4 1480 2100 34 53.4 1480 2100 34 53.4 1480 2100 34 53.4 2012 2012 44 53.5 2012 2056 44</td><td>50 100</td><td>80</td><td></td><td></td><td>24</td></td<>	53.4 1530 33 60.5 40.5 1530 33 50.2 2011 34 34 50.2 2011 34 34 50.2 2011 34 34 51.4 2100 2100 33 53.4 1480 2100 34 53.4 1480 2100 34 53.4 1480 2100 34 53.4 1480 2100 34 53.4 2012 2012 44 53.5 2012 2056 44	50 100	80			24
13300 60:5 1340 60:5 1340 60:5 1340 60:5 1340 60:5 1340 60:5 1340 60:5 1340 1350 1350 1350 1350 1350 1350 1350 1360 1390 <t< td=""><td>2011 2012 2011</td><td>0 1640</td><td>10.01</td><td>1620</td><td>51.2</td><td>0894</td></t<>	2011 2012 2011	0 1640	10.01	1620	51.2	0894
2009 30.2 2001 41.0 2005 31.1 2000 41.0 2000 41.0 2000 <th< td=""><td>2 1959 2100 2 1959 2100 2 1959 2100 44.0 2100 44.0 2100 44.0 2100 310.0 2100 44.0 2100 44.0 2100 44.0 2012 44.0 2000 44.0 20000 44.0 2000 44.0 20000 44.0 20000 44.0 200000000000000000</td><td>2001 X</td><td>1 92</td><td>0000</td><td>6.92</td><td>2000</td></th<>	2 1959 2100 2 1959 2100 2 1959 2100 44.0 2100 44.0 2100 44.0 2100 310.0 2100 44.0 2100 44.0 2100 44.0 2012 44.0 2000 44.0 20000 44.0 2000 44.0 20000 44.0 20000 44.0 200000000000000000	2001 X	1 92	0000	6.92	2000
2005 30.7 2000 31.7 2000 31.8 2000 30.0 2000 <td< td=""><td>5 30.7 2040 31 5 44.0 2100 44 2 1959 2100 44 6 53.4 1480 38 30.0 2012 24 38.0 2012 24 40</td><td>2016</td><td>29.6</td><td>2020</td><td>28.6</td><td>2030</td></td<>	5 30.7 2040 31 5 44.0 2100 44 2 1959 2100 44 6 53.4 1480 38 30.0 2012 24 38.0 2012 24 40	2016	29.6	2020	28.6	2030
2065 44.0 2100 42.0 2100 44.0 2100 44.0 2100 209 21.0 9.10 21.0	5 44.0 2100 40 2 1959 2100 40 0 53.4 1480 38 3 30.0 2012 24 38.0 2012 24	2045	38.1	2050	40.0	2055
22 1959 2100 60 140 100 0.77 1960 209 1400 53.4 1480 38.5 1490 38.5 1520 53.4 1500 209 1400 53.4 1480 38.5 1490 38.5 1520 53.4 1500 53.4 1500 53.4 1500 53.6 53.9 1500 53.6 53.9 1500 53.9 1530 53.9 2093 53.9 2093 23.9 2093 23.9 2093 23.9 2093 23.9 2093 23.9 2093 23.9 2093 23.9 2093 2093 23.9 2093 23.9 2093	2 1959 2100 53.4 1480 38 47.8 1960 40 38.0 2012 256 40	.0 2200	53.8	2250		
22 1959 2100 60 140 100 0.77 53.6 1530 53.6 1530 53.6 1530 53.6 1530 53.6 1530 53.6 1530 53.6 1530 53.6 1530 53.6 1530 53.6 53.6 1530 53.6<	2 1959 2100 53.4 1480 47.8 1960 40 30.0 2012 24	9.10	9.10		1960	2099
1400 51.4 1480 38.5 1490 38.5 53.6 53.7 53.7 <td< td=""><td>0 53.4 1480 38 47.8 1960 40 30.0 2012 24 38.0 2056 40</td><td>60 140</td><td>100</td><td>0.77</td><td></td><td></td></td<>	0 53.4 1480 38 47.8 1960 40 30.0 2012 24 38.0 2056 40	60 140	100	0.77		
1400 53.4 1490 38.5 1490 38.5 1520 53.4 1310 2005 30.0 2010 20	0 53.4 1480 38 9 47.8 1960 46 3 30.0 2012 25 3 38.0 2056 46			39.0	53.8	
1959 47.8 1960 40.0 1978 38.0 2030 29.5 2033 29.5 2033 29.5 2033 29.5 2033 29.5 2033 2033 2035 2033 2035 2033 2035 2033 2035 2033 2035 2033 2035 2033 2033 2035 2033 2035 2033 2035 2033 2035 2033 2035 2037 2035 2037 2035 2037 2035 2037 2035 2037 2035 2037 2035 2037 2035 2037 2035 <td< td=""><td>9 47.8 1960 40 5 30.0 2012 25 3 38.0 2056 40</td><td>.5 1490</td><td>38.5</td><td>1520</td><td>53.4</td><td>1530</td></td<>	9 47.8 1960 40 5 30.0 2012 25 3 38.0 2056 40	.5 1490	38.5	1520	53.4	1530
2005 30:0 2012 23:5 2022 28:9 2030 29:9 2030 29:9 2030 29:9 2030 29:9 2030 29:9 2030 2039 2030 2039 2030 2030 2039 2030 <th< td=""><td>5 30.0 2012 25 3 38.0 2056 40</td><td>.0 1978</td><td>38,0</td><td>1990</td><td>36.0</td><td>1998</td></th<>	5 30.0 2012 25 3 38.0 2056 40	.0 1978	38,0	1990	36.0	1998
2043 38.0 2056 40.0 2068 44.0 2084 49.0 2093 2100 53.8 2.6 700 12.3 9.10 9.10 9.10 10.0 10.0 BURLINGTON NORTHERN RAILROAD BRIDGE 0 9.10 9.10 9.10 9.10 9.10 10.0 10.0 BURLINGTON NORTHERN RAILROAD BRIDGE 0 20 20 20 10.0	3 38.0 2056 40	.5 2022	28.9	2030	29.9	2035
Z100 33.8 Z500 12.3 9.10 9.10 3.2 1931 1938 BURLINGTON INSTREAM RAILROAD BRIDGE 9.0 9.10 9.10 3.2 9.10 3.2 30.0 <		.0 2068	44.0	2084	49.0	2099
1.8 2.6 700 12.1 9.10 9.10 9.10 1170 1.2 10.0 10.	0052 8.66 0					
1.8 2.6 700 12.3 9.3 1170 3.2 30.0		9.10	9.10		1831	1938
DOKUNATION NOTIFIEM MALACOUNTRY 20 20 20 1.0 15	8 2.6 700 12	.3 9.3	1170	3.2	30.0	30.0
I 50.7 53.4 9.11 9.11 39.0 53.8 15 D/S EDGE OF U.S. MMY 30 POUR LANE BRIDGE 19 9.11 9.11 9.11 1965 2097 19 1965 2097 70 70 70 70 2091 19 1965 45.0 1250 44.5 1450 45.0 1965 2091 1000 45.0 1250 44.5 1450 45.0 1700 45.4 2092 49.7 2091 2031 29.7 2921 43.0 1970 36.5 2092 49.2 2094	WINN NORTHERN MALLYOAD BRIDGE	20 20	20	1 0		
39.0 53.8 D/S EDGE OF U.S. MAY JO FOUR LANE BRIDGE 19 9.11 9.11 1965 2097 19 1965 2097 70 70 70 1965 2097 1000 45.0 1250 44.5 1450 45.0 1700 45.7 2031 1000 45.0 1250 44.5 1450 45.0 1700 45.7 2031 2031 29.7 2051 36.5 1970 36.5 1991 29.7 2036 2031 29.7 2051 36.5 2071 43.2 2092 43.2 2036 2031 29.7 2051 36.5 2071 43.2 2092 43.2 2036 2031 29.7 2125 46.0 27.6 27.0 3065 2.0 1700 1.76 2.6 2.6 2.0 9.11 9.11 9.11 1779 U/S EDGE OF U.S. HMY 30 FOUR LANE BRIDGE 9.11 9.11 9.11 9.11 1779 U/S EDGE OF U.S. HMY 30 FOUR LANE BRIDGE 1.10 1.0 1.00 1.176 0 1.76 2.6 2.7 5.0 3065 1.179 0 1.7 <t< td=""><td>1 50.7 51</td><td></td><td></td><td></td><td></td><td>15</td></t<>	1 50.7 51					15
D/S EDGE OF U.S. MeY 10 FOUR LANE BRIDGE 19 9.11 9.11 9.11 1965 2097 2097 70 70 70				39.0	\$3.8	
19 1966 2097 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 44.5 45.7 45.7 45.7 1937 2031 2031 2931 2931 2041 2041 2041 2041 2041 2041 2041 2041 2041 2041	AND SITT STORE OF ANY S II SY SAV	9.11	9.11		1965	2097
19 1965 2097 70 70 70 70 71 1000 45.0 1250 44.5 1450 45.0 1700 45.7 1937 1010 45.0 1250 44.5 1450 45.0 1700 45.7 1937 1011 29.7 2051 45.0 1370 45.7 2092 43.2 2092 43.2 2092 43.2 2095 2092 43.2 2095 2092 43.2 2095 2092 43.2 2095 2092 43.2 2095 2092 43.2 2095 <t< td=""><td>WE OF U.S. BHT 3U FUUX LANE BALL</td><td></td><td></td><td></td><td></td><td></td></t<>	WE OF U.S. BHT 3U FUUX LANE BALL					
1000 45.0 1250 44.5 1450 45.0 1700 45.4 1937 1965 43.0 1956 43.0 1970 36.5 1991 29.7 2031 2011 29.7 2051 36.5 2092 43.2 2032 2032 2032 2031 2092 43.2 2095 2092 43.2 2095 2092 43.2 2095 2092 43.2 2095 2095 2092 43.2 2095 2095 2095 2092 43.2 2095 2095 2095 2092 43.2 2095<	1607 6067 6	01 01	2	44.5	45.7	
1965 43.0 1966 43.0 1970 36.5 1991 29.7 2031 2031 29.7 2051 36.5 2071 43.2 2092 43.2 2095 2037 45.7 2051 36.5 2071 43.2 2092 43.2 2095 2097 45.0 2250 48.0 2450 2450 2011 <td>0 45.0 1250 44</td> <td>.5 1450</td> <td>45.0</td> <td>1700</td> <td>45.4</td> <td>1937</td>	0 45.0 1250 44	.5 1450	45.0	1700	45.4	1937
2031 29.7 2051 36.5 2071 43.2 2092 43.2 2096 43.2 2096 43.2 2096 43.2 2096 43.2 2096 43.2 2095 43.2 2095 43.2 2096 43.2 2092 43.2 2092 43.2 2096 43.2 2096 43.2 2091 30.1 <th< td=""><td>5 43.0 1966 43</td><td>.0 1970</td><td>36.5</td><td>1991</td><td>29.7</td><td>2031</td></th<>	5 43.0 1966 43	.0 1970	36.5	1991	29.7	2031
2097 45.7 2125 46.0 2250 48.0 2450 1.76 2.6 27 5.0 806 2.0 30.1 30.1 U/S EDGE OF U.S. HAY 30 FOUR LANE BRIDGE SURVEY ELEV'S DIFFER FROM 1971 OKTHOPHOTO-TOPO, NEW ROAD GRADE. 0 1 43.2 44.5 120 120 1.0 0.71 15 1000 46.0 1250 45.0 1455 45.5 45.5 1565 170	1 29.7 2051 30	.5 2071	43.2	2092	43.2	2096
1.76 2.6 27 5.0 806 2.0 30.1 30.1 U/S EDGE OF U.S. HWY 30 FOUR LANE BRIDGE 9.11 9.11 1.10 SURVEY ELEV'S DIFFER FROM 1971 ORTHOPHOTO-TOPO, NEW ROAD GRADE. 1.0 0 0 1 43.2 44.5 120 120 1.0 0.71 15 1000 46.0 1250 45.0 1415 44.5 45.5 1555 45.5 1555 1555 1555	7 45.7 2125 40	.0 2250	48.0	2450		
U/S EDGE OF U.S. HWY 30 FOUR LANE BRIDGE SURVEY ELEV'S DIFFER FROM 1971 ORTHOPHOTO-TOPO, NEW ROAD GRADE. 0 0 0 0 0 0 120 1 43.2 44.5 44.5 44.5 45.1 1000 46.0 1250 45.0 1360 44.5 44.5 45.5 1779 45.6 1450 44.5 45.5 45.5 45.5 45.5 45.5 45.5 1500 1000 46.0 1000 45.0 10000 45.0 100000000000000000000000000000000000	6 2.6	27 5.0	806	2.0	30.1	30.1
0 0 0 120 120 1.0 0 0 0 120 120 1.0 0 0 1 41.5 44.5 1000 46.0 1250 45.0 14.5 45.5 1000 46.0 1250 45.0 14.5 45.5	AND AND AND ALL AND A H AV AVA	9.11	9.11		1685	6111
0 0 0 120 120 120 1.0 1 43.2 44.5 120 120 1.0 44.5 45.1 1000 46.0 1250 45.0 1450 44.5 1700 25.0 137 25.4 1450 45.5 45.5	Y ELEV'S DIFFER FROM 1971 ORTHOPP	OTO-TOPO, NEW RO	AD GRADE.			
1 43.2 44.5 0.71 15 44.5 44.5 45.1 15 1000 46.0 1250 45.0 1450 44.5 45.5 1700 45.0 1317 45.4 175 45.5 45.5	0 0 0	20 120	120	1.0		
1000 46.0 1250 45.0 1450 44.5 45.5 1500 44.5	1 43.2 44	\$		24 5	0.71	15
1700 25.0 1917 45.4 1965 47.5 45.5	0 46.0	50 45.0		1450	44.5	
100 million 100 mi	45.0	17 45.4		1965	47.5	45.5

,	un Date:	1880097	Run Time:	13:50:57	HMVersion: 6	.52 Data P	110: SCAP	C875.DAT		Page
87		1966	47.5	43.0	2096	47.7	43.2	2097	47.7	45.7
BT		2125	45.7		2250	46.0		2450	48.0	
ET	5.96					9.11	9.11		1685	1779
X1	5.96	0	0	0	1	1	1			
X5	-4	0.3	0.4	0.5	0.1					
NH	5	1.0	1850	0.085	1950	0.057	2010	. 09	2085	.05
NH	2450									
ET	5.99	Sa 1997 - 19	50 11 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	an inclusion	and the second	9.10	3.40		1950	2050
		X-SEC FI REFLECT:	ROM ODOT TO S CHANNEL RI	PO AND CREEK EALIGNMENT U	PROFILE MAP /S OF NEW HWY	#31429, MARCH 30 BRIDGE	1976			
X1	5.99	18	1950	2010	180	90	140			
X2										15
GR	50.0	1100	44.0	1250	44.5	1600	45.0	1700	42.0	1720
GR	40.0	1730	39.0	1850	40.0	1950	30.0	1965	29.5	1980
GR	30.0	1995	40.0	2010	40.0	2050	41.0	2075	45.7	2085
GR	46.0	2095	46.6	2140	50.0	2450				
NC				0.2	0.4					
07	2	1930	2900	3360	4450	3360	3360	2750		
NH	4	1.0	1600	0.085	1977	0.057	2030	0.085	2450	
87	6.02	*.*		*		9.10	9.40		1970	2100
		X-SEC 6 SURVEY I DEVELOPI	.1 (1984 SUB ELEVATIONS D RENT ON LEFT	VEY) UPSTRE DIFFER FROM BANK, WITH	AM OF HWY 30 1971 ORTHOPHO FILL TO ELEV	TO-TOPO, NEW 44+ FT.	LAND			
X1	6.02	20	1977	2030	180	180	200			
X4	1	43.8	1700							and the second
GR	50.0	1300	44.2	1600	44.5	1823	45.0	1900	44.4	1960
GR	42.0	1970	40.0	1977	34.0	1991	30.0	2000	29.5	2005
GR	30.0	2010	32.0	2015	39.4	2030	41.7	2050	40.0	2100
GR	40.0	2150	41.0	2230	42.0	2260	47.0	2270	50.0	2450
NC	0.09	0.09	0.057	0.5	0.9					
NH	5	1.0	1910	.08	1970	.057	2051	.08	2200	1.0
NH	2350									
87	6.09					9.10	8.40		1950	2100
X1	6.09	25	1950	2051	350	250	360			
GR	48.0	1500	46.0	1620	45.6	1765	45.5	1800	46.0	1900
GR	38.0	1910	40.2	1950	38.0	1970	34.0	2000	31.9	2003
GR	31.0	2009	30.5	2019	30.0	2028	30.5	2036	31.0	2042
GR	31.9	2046	37.0	2051	36.0	2062	36.0	2085	42.0	2100
GR	39.5	2130	42.0	2200	48.0	2278	48.6	2300	49.3	2350
NH	5	1.0	1950	0.08	1980	.057	2062	0.08	2100	1.0
NH	2374									
ET	6.11		and and a second			9.10	9.40		1970	2062
		55' D/S X-SEC 9	OF PVT (CRO (1971 SURVI	SWN ZELLARBA	CH) LOGGING R	OAD BRIDGE				
X1	6.11	24	1980	2062	50	100	90			
CD	48.0	1500	46.0	1620	45.6	1765	45.5	1800	46.0	1900
200										
GR	39.0	1910	39.5	1950	39.0	1980	36.0	2003	31.0	2009
GR GR	39.0 29.0	1910 2019	39.5 28.5	1950 2028	39.0 29.0	1980 2036	36.0	2003 2042	31.0 31.9	2009 2046

	Run Date:	18NOV97	Run Time:	13:50:57	HMVersion:	6.52 Data	File:	SCAPC875.DAT		Page
GR	42.9	2278	48.4	2300	49.3	2341	52.	5 2374		
	0.00	0.00	0.052							
NC OF	0.09	0.09	0.057			0.11	0.1		2001	2050
6.1	0.110			0000		9.11	9.1		2001	2033
X1	6.115	25	2001	2059	20	50	2		10.0	
X3	10							45.5	47.7	1010
GR	50.0	1250	48.0	1500	46.0	1620	45.	6 1765	44.9	1832
GR	44.7	1897	44.5	1933	44.7	1965	44.	1 2001	44.1	2006
GR	37.6	2007	32.2	2018	28.7	2020	27.	7 2030	28.7	2036
GR	30.2	2042	32.2	2043	37.8	2049	38.	3 2053	44.4	2054
GR	44.4	2059	44.4	2080	44.4	2165	44.	4 2235	50.0	2350
SB	1.10	1.62	2.6		18	2.33	60	5 1.27	30	30
87	6.12					9.11	9.5	1	2001	2059
		U/S SID	E OF PVT LO	GGING ROAD	BRIDGE					
X1	6.12				14	14	1	4		
X2			1	46.5	45.6					15
X3	10							45.7	47.9	
BT	-12	1250	50.0		1500	48.0		1620	46.0	
BT		1765	45.6	45.6	1832	46.0	44.	9 1933	46.5	44.5
87		2001	47.8	46.5	2059	47.8	46	5 2080	48.0	44.4
BT		2165	49.0	44.4	2235	50.0	44.	4 2350	50.0	50.0
87	6.13					9.11	9.1	1	2011	2093
X1	6.13	25	2011	2093	50	50	5	0		
X3	10							45.7	49.0	
GR	50.0	1250	48.0	1500	46.0	1620	45.	0 1765	45.0	1832
GR	46.0	1900	46.5	1933	44.9	1990	44.	6 2011	42.0	2011
GR	37.6	2020	32.2	2040	29.7	2044	28.	9 2052	29.7	2058
GR	30.2	2064	32.2	2065	37.8	2071	38.	3 2075	42.0	2080
GR	43.1	2093	45.6	2093	49.3	2130	50.	0 2235	50.0	2350
00		1.02	2.6		20	2.22		0 1.10	30.0	30.0
00	6 126	4.03	2.0		20	0 11	0 1	4.30	2011	2093
2.1	0.135	1110 010			-	3.44	2.4	č.	LUXA	2033
	1 1.25	0/5 510	E OF SCAPPO	OSE-VERHOWA	A KOAD BRIDGE					
Ak	0.135				15 0	40	-	0		15
XZ			1	40.0	45.0				10.0	10
XJ	10							42.7	49.0	
BT	-11	1250	50.0		1500	48.0		1620	40.0	
87		1765	45.0	45.0	1900	46.0	46.	0 1990	47.9	44.9
87		2011	48.1	44.6	2093	49.0	45.	6 2130	49.3	
BT		2235	50.0		2350	50.0				
NH	4	0.25	1920	.085	2000	.057	209	0 .090	2350	
ET	6.15					9.11	7.4	0	1960	2120
XI	6.15	20	1960	2090	70	30	6	0		
YS	10	20						45.7	49 0	
CR	50.0	1250	48 0	1260	46.0	1280	44	0 1290	42.0	1320
CP	42.0	1220	44.0	1700	45.0	1920		0 1960	40.0	1980
00	40.0	2000	32.0	2016	31.0	2025	20	0 2016	31.0	2045
200	33.0	2000	32.0	2015	34.0	2025	50.	0 2035	50.0	2360
GR	32.0	2060	30.0	2015	40.0	2090	50.	0 2140	50.0	2330

2064			1360	1956	2021	2200	2476		2200		1786	1900	2008	2046	0020	2009	2200				1786	1910	0107	C. DOALC	2450		32.0	2200		15				44.8				2200		1765	2002	2121	
1400	0067		43.7	41.9	29.9	14.7	48.0		1980		45.8	44.8	42.4	20.0	1.04	1.00	1980			45.1	45.8	45.4		0.00 2 2 2 2	45.6		32.0	1980			1.55	16. 24	46.2	47.0	45.8	45.1	48.8	1980		45.6	45.1	43.6	
			1230	1900	2013	2145	2420				1700	1890	2004	2044	0017	1099				45.4	1715	1890	CT07	2110	2350		0.01			20 2	45.4	1890	1990	2051	2140	2350	2600			1715	1965	2065	
0 40	0	430	44.1	42.9	35.0	1.05	46.0		6.40	390	46.0	45.7	45.2	31.8	1 22		11.8		50		46.3	45.7	0.14	0.15	1.57		435	9.11	22					44.8				9.50	33	46.3	44.7	23.6	
01.0	N LEFT BANK	500	1160	1860	2010	2107	2300		9.10	150	1570	1871	2000	2033	1120	2660	9.11		50		1655	1871	2000	6906	2269	2660	-	9.11	22		1.31	45.4	45.7	47.2	46.2	45.4	46.7	9.10	33	1655	1933	2053	
0.4	ROAD, FILL OF	600	46.8	44.0	36.0	44.4	44.5			350	46.0	45.4	45.8	31.6	0.04	50.0			50	1	47.5	42.4	0.00	0.45	4 57	20.02	35		22	45.1	1116	1871	1967	2033	2115	2269	2550		33	47.5	44.5	42.2	
0.2	E-VERMONIA	2064	1150	1780	2000	2100	2260			2059	1520	1808	1990	2023	1100	2600		DOR	2051		1520	1815	0661	2043	2250	2600				44.6				44.8					2053	1520	1897	2049	22.04
0.057	OF SCAPPOOS	2010	48	44.6	0.15	44.44	44.6			2004	48.0	45.8	46.2	32.0	0.00	48.0		TH ROAD BRI	2015		00.00	5.54	10.00	0.45	3 37	48.8	2.8			-		0.54	45.4	47.0	46.8	45.5	45.6		2005	40.00	1.99	27.8	2
0.090	UPSTREAM	31	1050	1560	1961	2091	2211	2480		33	1450	1800	1961	2016	6000	2565		E. J. SMI	33		1450	1800	1961	1300	2200	2550	1.53				1266	1800	1915	2015	2062	2250	2450		27	1450	1832	2043	
0.084	C**0	6.23	50	43.4	8.15	44.4	44.2	50.0	6.30	6.30	50.0	45.9	45.7	34.8	×	16.0	6.31		6.31	10	20	6.55	0.00	0.00	6.54	46.7	1.05	6.315	6.315		10							6.32	6.32	20.0	6.99	32.2	
22	ā	XI	68	3	x a	5 0	GR	GR	10	XI	GR	CK CK	es a	X a	5 8	58	1		XI	x3	i de	No Se	30	500	5 8	CS S	SB	5	XI	X	25	. 4.8	10	18	82	53	19	13	XI	CB	3	S a	5

• Page

es S	42.6	2165	43.7	2235	45.4	2269	45.1	2300	46.0	2565	
8	48.8	2600	50.0	2660							
NC	0.084	0.084	0.057								
13	6.50	DOMISTREAM	OP J. P. W	CEST ROAD		9.10			1980	2200	
XI	6.50	23	2016	2056	710	690	960				
S.	50	1700	45	1800	42.6	1900	42.5	1925	39.7	2000	
čš.	39.3	2008	39.1	2016	36.3	2017	31.1	2022	29.0	2042	
B.	33.5	2046	36.3	2054	29.8	2056	40.8	2100	41.0	2114	
3 3	46.0	2590	48.0	2650	50.0	2680	6.99	2300	46.1	0562	
1											
13	61.9	26	2000	DAAC	1160	2.10	05.6		1825	2050	
- 20	\$2.0	1450	0.05	1500	0.44	1580	46.0	1670	45.2	1700	
280	44.7	1800	44.3	1900	43.4	2003	37.4	2011	34.5	2019	
GR	34.5	2029	35.0	2038	37.4	2040	44.0	2049	43.8	2053	
GR	47.3	2077	48.4	2100	48.6	2107	48.7	2127	48.4	2200	
GR	48.4	2269	48.5	2300	48.4	2325	48.5	2430	50.0	2470	
NC				0.5	0.9						
5	6.76					9.11	9.51		1835	2049	
		J. P. WEST	ROAD BRIDG	36							
X	6.76				20	20	50	1.1.			
x	10							46.0	48.4		
SB	1.10	1.63	2.8		28	2.33	376.4	0.56	35.0	35.0	
5	6.77					9.11	9.51		1830	2049	
X	6.37				20	20	20		0.2		
X			1	46.7	46.0					15	
x3	10							40.0	48.4		
1	6	1500	0.05	0.00	1650	0.84	40.4	1850	40.0	44.0	
1.0	49.5	46.7	2050	2000	43.8	2100	48.4	42.5	1.04	×007	
13	6.78					9.10	9.50		1810	2049	
XI	6.78				50	50	20				
NC	0.08	0.08	0.05	0.2	0.4						
5	7.02					9.10	3.5		1900	2110	
		UPSTREAM O	P J. P. WES	T ROAD							
X	7.02	27	2016	2063	850	100	1250				
3	22.0	1560	20.0	1710	48.0	1760	46.2	2800	45.0	1850	
3	0.04	1950	A. 00	2000	1.00	2010	0.10	2018	51.0	8707	
× 0	0.15	2020	1.00	2000	51.0	0000	0.04	0000	2.00	2002	
30	49.6	2350	49.0	2470	48.5	2600	48.0	2700	48.5	2780	
CK.	50.0	2830	52.0	2850							

Page	2070	1050	2018	2063	2245	2550	1	.08	2070			38.0	2070		CT	51.4	52.4	0.08	0202				0000	0/07		1745	1900	2020	2062	2650	2075	****		1900	2025	2084	110
	1960	0 03	18.1	50.0	53.8	53.0		2550	1970		52.4	38.0	1970		52.4	56.4	52.4	2550	1050		52.4		1000	1900		54.0	52.0	38.9	49.6	0.86	1975			57.7	44.0	57.1	**A
875.DAT		1000	2011	2041	2200	2350	l	1.0			52.3	1.92			52.3	1661	2131	1.0			52.3		2750			1725	1850	2016	2051	2530				1800	2018	2071	****
ile: SCAPC	8.50	1 13	11.7	46.4	53.8	54.2		2200	9.50	50		507.6	9.51	26		51.5	50.0	2200	2 60	50			3115	00.4	2200	56.0	52.0	41.6	41.6	0.96			3800	61.2	46.5	55.0	1.00
52 Data F	9.10	0101	2000	2036	2169	2300		0.08	9.11	50		2.33	9.11	26		52.8	52.6	.08	010	50			3115	3.10	1800	1710	1820	2005	2044	2420	9.10	A	2100	1790	2013	2050	4410
Wersion: 6.	1600	64.0	47.9	41.6	53.1	53.9	0.9	2063		50		15		26	5.36	1990	2063	2063		50		0.4	4125		1300	58.0	54.0	52.2	37.0	0.90			2000	64.1	48.0	55.2	0.00
3:50:57 H	2063	0021	1990	2032	2131	2287 2720	0.5	0.05					0.00	200	91.40	52.7	51.2	0.05				0.2	3115	UVU SAA	2070	1640	1800	2000	2038	2380		CANYON ROAD	2050	1725	2004	2037	2222
Run Time: 1	2000	2600	51.5	38.0	52.4	53.7 56.0		2000				2.6	TOD UTA Dev	THR MYNA ST.	-	52.7	56.2	2000				0.055	2690	No N N N	2005	58.0	55.0	52.1	34.6	\$0.04	0.055	M OF DUTCH	2004	69.1	56.9	47.9	2.00
18//0/97	27	54.0	1900	2026	2100	22650	3	0.08				1.5		E. N. MAI		1900	2062	.08				0.082	1795	NTOCADOTI	30	1520	1780	1980	2031	2170	0.082	DOWNSTREAM	20	1700	2000	2032	224
Run Date:	7.43	1 22	52.7	37.7	50.6	53.5		5000	7.44	7.44	10	1.10	1.45	7.45	10	9-		5	2720	7.46	10	0.082	C	1.81	7.87	60.0	54.0	54.0	37.3	0.09	0.082	07.0	8.58	71.7	56.9	44.9	1.10
	13 XX	X	58	CE:	C.S.	88	2	Z j		X	x	28	ta	25	XX	18	84	NZ	E L	17	x3	NC	51	12	X1	No.	GR	GR	8	38	21	-	x	GR	GR	a c	5

-

8.25					9.10	9.10		1980	2050
8.75	25	1988	2042	850	850	950			
10					0.50		52.0	60.1	
78.6	1700	70.8	1800	69.3	1816	66.4	1876	62.4	1936
61.7	1960	60.6	1976	53.8	1988	51.1	1999	50.9	2001
50.8	2002	49.8	2008	49.3	2016	50.1	2024	50.4	2032
50.4	2033	51 1	2032	57 1	2042	58.0	2076	59.4	2150
59.6	2176	60.1	2200	62 1	2335	63 0	2355	80.0	2450
						00.0	2000	00.0	
			0.5	0.9					
8.76					9.11	9.11		2002	2032
8.76	25	2002	2032	100	100	100			
10							63.4	60.1	
78.6	1700	70.8	1800	69.3	1816	66.4	1876	66 0	1900
63.5	1970	63.4	2002	60.5	2002	51.4	2003	49.9	2007
50.2	2013	50.6	2022	51.3	2031	60.5	2032	63.2	2032
61.7	2076	61.0	2100	60.9	2132	60.1	2200	60.7	2212
60.8	2232	61.1	2282	62.1	2300	63.0	2334	80.0	2450
		****				03.0			
1.10	1.5	2.8		30	0.01	333.5	0.01	50.0	50.0
8.77					9.11	9.11		2002	2032
	DUTCH CAN	YON ROAD BR	IDGE						
	A DUMMY P	IER WIDTH I.	S LISTED SO	THAT PRESSUR	E AND WIER F	LOW ARE			
	COMPUTED.	WITHOUT TH	E PIER WIDTH	, THE PROGRA	M COMPUTES 1	OW FLOW			
	WHEN THER.	E IS ACTUAL	LY PRESSURE	AND WIER FLO	W IN THIS CA	SE.			
8.77	Converse. Conserve	el se les seres		20	20	20			
		1	60.5	60.1					15
10							63.4	60.1	
-14	1876	66 4		1900	66.0		1970	63.5	
	2002	63 4	60.5	2032	63 2	60.5	2076	61.2	
	2100	61 0	00.5	2132	60.0	00.5	2200	60.1	
	2212	60.7		2232	60.9		2282	62 1	
	2300	62.1		2224	63.0		4044	04.4	
	2300	04.4		2334	03.0				
8.78					9.10	9.10		1980	2060
8.78	25	1988	2042	50	50	50			
10							52.0	60.1	
78.6	1700	70.8	1800	69.3	1816	66.4	1876	62.4	1936
61.7	1960	60.6	1976	53.8	1988	51.1	1999	50.9	2001
50.8	2002	49.8	2008	49.3	2016	50.1	2024	50.4	2032
50.4	2033	51.1	2037	57.1	2042	58.0	2076	59.4	2150
59.6	2176	60.1	2200	62.1	2300	63.0	2334	80.0	2450
27.14					2000				
			0.2	0.4					
7	1730	2585	2990	3960	2990	2990	2750		
8.88	No. of Street, or other				9,10	7.50		1880	2110
	UPSTREAM	OF DUTCH CA	NYON ROAD						
8.88	17	2003	2076	450	550	600			
77.9	1700	69.7	1751	65.8	1800	65.1	1833	61.0	1900
60 4	2000	59.5	2003	52.6	2016	50.9	2021	50.6	2024
00.4									
50.7	2034	49.4	2043	49.8	2053	52.6	2062	60.2	2076
	8.75 8.75 10 78.6 61.7 50.8 50.4 59.6 8.76 8.76 10 78.6 63.5 50.2 61.7 60.8 1.10 8.77 8.77 10 -14 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.7	8.75 8.75 25 10 78.6 1700 61.7 1960 50.8 2002 50.4 2033 59.6 2176 8.76 25 10 78.6 1700 63.5 1970 50.2 2013 61.7 2076 60.8 2332 1.10 1.5 8.77 DUTCH CAN A DUMMY P COMPUTED. WHEN THER 8.77 10 -14 1876 2002 2100 2212 2300 8.78 8.78 2.5 10 78.6 1700 60.8 2022 2100 2212 2300 8.78 8.78 2.5 10 78.6 1700 61.7 1960 50.2 2013 61.7 2076 60.8 2022 2100 2212 2300 8.78 8.78 8.78 2.5 10 78.6 1700 61.7 1960 50.8 2002 2100 2212 2300 8.78 8.78 2.5 10 78.6 1700 61.7 1960 50.8 2002 2100 2212 2300 8.78 8.78 2.5 10 78.6 1700 61.7 1960 50.8 2002 2100 2212 2300 8.78 8.78 2.5 10 7 1730 8.88 UPSTREAM 8.88 17 7.9 1700	8.75 25 1988 10 78.6 1700 70.8 61.7 1960 60.6 50.8 2002 49.8 50.4 2033 51.1 59.6 2176 60.1 8.76 25 2002 10 70.8 63.5 78.6 1700 70.8 63.5 1970 63.4 50.2 2013 50.6 61.7 2076 61.0 60.8 2232 61.1 1.10 1.5 2.8 8.77 DUTCH CANYON ROAD BR A.77 1 10 1.5 2.8 8.77 1 10 1.5 2.8 8.77 1 1 10 1.5 2.8 8.77 1 1 10 1.5 2.8 8.77 2002 63.4 2100 61.0 2212 2010 61.0 2212 200 1.0	8.75 8.75 25 10 78.6 1700 70.8 2002 49.8 2008 50.4 2033 51.1 2037 59.6 2176 60.1 2200 0.5 8.76 8.76 25 2002 2032 10 78.6 1700 70.8 1800 63.5 1970 63.4 2002 50.2 2013 50.6 2022 61.7 2076 61.0 2100 60.8 2232 61.1 2282 1.10 1.5 2.8 8.77 1 60.5 10 70.6 1.10 1.5 2.8 8.77 1 60.5 10 71.6 10 1.5 2.8 8.77 1 60.5 10 7.8 8.77 1 60.5 10 7.8 8.77 1 60.5 10 7.8 8.77 1 60.5 10 7.8 8.77 1 60.5 2002 61.4 2002 61.1 2.8 8.77 1 60.5 2.00 61.0 2.10 60.8 2.232 61.1 2.8 8.77 1 60.5 2.00 61.0 2.10 60.4 2.002 61.4 2.00 61.4 2.00 61.4 2.00 61.4 2.00 61.4 2.00 61.4 2.00 61.4 2.00 61.4 2.00 61.4 2.00 61.4 2.00 61.4 2.00 61.4 2.00 61.4 2.00 61.4 2.00 61.4 2.00 61.4 2.00 61.4 2.00 61.7 2.00 61.7 2.00 61.1 2.00 61.7 2.00 61.1 2.00 61.2 2.00 61.2 2.00 61.2 2.00 61.2 2.00 61.4 2.00 61.7 2.00 61.7 2.00 61.7 2.00 61.7 2.00 61.7 2.00 61.7 2.00 61.7 2.00 60.6 1.976 50.8 2.002 4.9.8 2.008 5.4 2.003 5.1 2.007 5.8 2.002 4.8 2.008 5.0 4.203 5.1 2.007 5.8 2.900 8.88 UPSTREAM OF DUTCH CANYON ROAD 8.88 17 2.003 2.076 7.9 1.700 6.9.7 1.751	8.75 25 1988 2042 850 10 176.6 1700 70.8 1800 69.3 61.7 1960 60.6 1976 53.8 50.8 2002 49.8 2003 51.1 59.6 2176 60.1 2200 62.1 0.5 0.9 8.76 8.76 100 63.4 2002 2032 100 10 0.5 0.9 8.76 1700 70.8 1800 69.3 63.5 1970 63.4 2002 60.5 50.2 2013 50.6 2022 51.3 61.7 2076 61.0 2100 60.9 60.1 60.8 2232 61.1 2282 62.1 1 1.10 1.5 2.8 30 8.77 1 60.5 2012 2100 61.0 2132 2122 212 212 212 2100 61.0 2132	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

87	9.23					9.10	9.50		1830	2054
		X-SEC 9.2	(1984 SURVI	EY)			1.30		1030	
X1	9.23	24	2006	2054	1004	1450	1700			
X4	2	86.3	748	96.9	2116					
GR	102.6	600	77.1	840	70.1	899	68 3	959	67.1	1158
GR	69.0	1320	68.5	1400	68.0	1482	64 3	1590	63 6	1646
GR	64.4	1700	63.0	1800	64.0	1900	64.0	1985	63.3	2000
GR	61.9	2006	59.5	2011	58.6	2014	58 8	2026	58.8	2038
CR	58 7	2049	50 5	2052	60.9	2054	160.0	2326	30.0	2030
90	30.7	2043	37.3	****	00.3	****	100.0	- 31.3		
87	9 50					9 10			1930	2130
	5.50	DOWNSTREAM	OF BR PLAT	TOAR BRIDGE					*****	
X1	9 50	33	2006	2049	1100	1300	1350			
YA.	1.50	62 2	2000	2043	*****	1300	****			
CP	100 0	1000	22 2	1112	22.2	1140	22 5	1201	22.0	1239
CP	22.6	1000	77.7	1421	22.5	1447	72.0	1461	24.6	1233
CR	74.5	1901	73.3	1931	14.5	1992	16.0	LOPA	14.5	1000
GR	19.9	2006	13.0	1800	69.7	1900	03.4	1914	00.5	1933
GR	07.8	2006	05.4	2013	03.0	2017	04.0	2028	02.2	2034
GR	00.9	2036	00.0	2044	08.0	2069	07.7	2100	09.1	210/
GR	08.7	2200	08.7	2208	69.8	2300	70.0	2350	12.0	2370
GR	10.0	2450	19.4	2050	100.0	2700				
	0.00	0.00	0.045							
Dim.	0.09	0.00	0.045			0 10	0 10		790	1050
51	9.00	Y			-	9.10	9.10		100	1030
~ 1	0 60	A-36C 1011	1000	1050, 41	ERANAIG DAL	400	\$20		-0.6	
00	9.00		1000	1030	200	400	330	100	-0.5	170
CR	04	210	00	20	70	50	74	560	70	250
CR	70	210	22	630		1000	12	5000	15 5	1026
CR	13	1030	73	1050	26	1000	26	1020	03.3	1160
CR	07	1030	00	1050	15	1090	10	1100	00	1150
Q.R	84	1170	30	1200						
£148	0 62					0 10	9.10		250	1050
N 1	9.62	0	0	0	100	200	100		0.5	1030
**	3.04	0	0	•	100	100	100		v. 5	
NC	0.08	0.08	0.055	0.2	0.4					
E-m	9 71	0.00	0.033		v	9.10	9.10		1800	2042
¥1	9 71	3.0	2000	2042	420	520	\$20		-0.8	2042
00	92 0	900	2000	1000	80.0	1100	20 3	1400	70.0	1500
CD	70 6	1200	28.0	1900	22.0	1006	22.0	1960	76.5	1976
GR	70.5	1700	10.4	1000	22.3	1043	26.0	1050	70.0	1006
OR	70.4	1001	70.9	1007	77.3	1913	10.0	1700	10.0	1980
GR	10.0	2000	10.1	2003	12.0	2008	69.0	2013	08.3	2010
GR	68.0	2022	67.0	2029	09.1	2033	/1.0	2041	11.4	2042
GR	78.1	2050	79.1	2061	79.5	2091	80.0	2130	100.0	2270
	0.10				0.0					
NC	0.10			0.5	0.9	0.11	0.11		1000	2012
EL	9.72		-			9.11	9.11		1800	2042
	0.00	RR FLATCAL	R BRIDGE, N	EAR END OF E	KANCH ROAD					
XI	9.72				50	50	50		0.4	
X3	10							76.4	79.0	

~										
58		1.5	2.0		21		210.8	1,60	70.0	70.0
NH		0.25	1800	0.09	2000	0.040	2042	0.09	2270	444
57	9.73					9,11	9.11		1800	2042
X1	9.73				11	11	11		0.4	
X2			1	77.7	78.0					15
X3	10							76.5	79.0	
87	-21	1100	80.0		1400	78.3		1800	78.2	
BT		1825	78.0	77.9	1850	78.0	77.0	1875	78.0	76.6
BT		1881	78.0	76.4	1887	78.0	26.4	1913	78.0	77.3
87		1955	78.0	76.0	1986	78.2	26 8	2000	78.9	76 8
0.4		2000	78.9	22.2	2013	70.4	26.4	2000	20.0	76.0
10 A		2000	70.9	22.4	2013	70.9	70.4	2033	10.9	70.4
DA		2042	19.0	11.0	2042	79.0	11.4	2050	79.0	10.1
BT		2061	79.1		2091	79.5		2130	80.0	
ET	9.74					9.10	3.50		1800	2042
XI	9.74				50	50	50		0.4	
NC	0.085	0.085	0.045	0.2	0.4					
ET	9.86	22222		100	2.6.2	9.11	8.5		1950	2160
	2100	220934	CID BETWEEN	BRANCH ROAD	AND RAVMOND CO		0.0		*730	
**	3.8 0	27	2000	2050	600	500	600			
25	1.00		2000	**37	000	300	000			
A6			0.7 0	1050				1144		12
GR	92.0	10	07.0	1059	85.0	11/4	84.0	1300	83.4	140/
GR	83.5	1483	83.5	1507	83.5	1517	84.0	1700	83.4	1800
GR	83,0	1814	81.2	1824	80.3	1900	79.5	2000	78.4	2008
GR	76.3	2023	75.0	2033	72.4	2041	72.0	2046	72.0	2050
GR	75.3	2054	78.3	2059	79.7	2100	80.1	2130	84.0	2300
GR	88.0	2450	100.0	2480						
ET	9.93					9.10	3.50		1000	1160
		X-SEC T	NTERPOLATED	FROM TOPO						
¥1	0 03	24	1000	1059	360	350	350			
0.0	92	100	2000	160	350	100	350	500	94	550
CD		200	00	4.50	0.1	000	00	1000	00	1000
QR OF	80	800	02	900	0.	980	84	1000	84	1008
GR	80	1023	77	1033	74	1041	78	1046	79	1050
GR	80	1054	82	1059	82	1100	83	1200	84	1250
GR	85	1400	88	1500	92	1530	100	1550		
QT	7	1600	2000	2210	2750	2870	2870	2000		
NH	4	1.0	1800	.085	1995	.055	2037	.085	2300	
ET	9.97					9.10	2.50		1850	2037
		UPSTREA FLOWS A RIGHT O WOULD S IS HIGH	M OF RAYMONI RE REDUCED ' VERBANK THRI TILL BE IN I ER THAN THE	D CREEK TO QUANTITY J BRIDGE. F LEFT OVERBAN CHANNEL CWS	THAT WOULD STAT LOW IN LEFT OVI X AT THIS X-SEX EL, SO THE OVER	Y WITHIN CH ERBANK AT B C BUT THE G RBANK FLOW	ANNEL AND RIDGE ROUND EL WOULD BE			
		CHANNEL	SO IT IS	DMITTED FROM	THE TOTAL FLOR	AT THIS X	-SEC.			
X1	9.97	30	1995	2037	200	200	200			
X2										15
GR	96.0	1000	88.0	1250	87.0	1378	86.7	1516	86.5	1600
GR	86.0	1663	85.7	1700	85.7	1710	85.4	1745	85.4	1800
GR	85.9	1843	85.3	1900	85.5	1925	84.5	1995	81.0	2000

	Run Date:	18NOV97	Run Time:	13:50:57	HMVersion:	6.52 Data	File: So	CAPC875.DAT		Page	15
GR	80.0	2003	78.0	2006	76.0	2009	74.8	2014	75.5	2020	
GR	76.7	2027	77.3	2031	83.0	2033	85.5	2037	87.1	2050	
GR	88.7	2092	90.1	2100	92.0	2126	92.3	2132	100	2300	
NC				0.5	0.9						
ET	9.98					9.10	9.10		1800	2031	
		D/S EDGI	E OF RAYMON	D CR ROAD B	RIDGE						
X1	9.98	28	2003	2031	100	100	100		-0.2		
X3	10							85.5	87.7		
X4	1	88.0	1150						a.c. (1.c.)		
GR	92.0	990	88.0	1378	86.7	1516	85.8	1600	85.8	1663	
GR	85.7	1700	85.7	1710	85.4	1745	85.4	1800	85.9	1843	
0.9	86 3	1900	86 5	1925	87 9	2000	87 6	2003	79.4	2006	
00	79.3	2009	25.9	2014	26.5	2020	22.2	2027	79.3	2031	
00	67.0	2009	00 E	2013	00.3	2020	00.7	20027	00.3	23.00	
COR.	07.7	2033	00.3	2037	00.1	2050	67.7	2092	30.1	2100	
GR	92.0	2126	92.3	2132	100	2300					
NH	4	.20	1800	.085	2003	.050	2031	.085	2300		
QT	7	1660	2480	2870	3800	2870	2870	2600			
SB		1.5	2.6		28		241		77.5	77.3	
ET	9.99					9.11	9.11		1800	2031	
		U/S EDGI	E OF RAYMON	D CR ROAD B	RIDGE						
X1	9.99				19	19	19		0.2		
X2			1	86.2	85.7					15	
X3	10							85.7	87.9		
BT	-21	990	92.0		1150	88.0		1378	86.7		
5.9		1516	85 8		1600	85 8		1663	85 8		
5.0		1200	96.7		1245	95.7	85 A	1800	85 9	25.4	
0.4		1043	05.7		1000	96.3	03.4	1025	96.6	02.4	
01		2000	03.7		2003	00.3	07 6	1943	00.3	96.3	
BI		2000	87.9	67.6	2003	00.4	07.0	2003	00.4	00.4	
BT		2031	88.3	80.0	2031	88.3	18.3	2033	88.3	87.9	
BT		2037	88.5		2050	88.1		2092	89.7		
NH	4	0.15	1700	0.085	1994	0.045	2046	.085	2120		
ET	10.00					9.10	10.50		1800	2046	
		X-SEC 22	2 OF 1971 S	URVEY							
X1	10.00	20	1994	2046	50	50	50				
x2			22222			7.5				15	
GR	92.0	990	89.0	1300	88.0	1450	86.7	1516	85.8	1600	
CR	85 7	1700	85.8	1802	85.6	1831	85.2	1852	82.9	1882	
CP	83 2	1982	82 9	1994	22.2	2006	26.2	2011	77 3	2018	
00	22.2	2031	62.1	2046	80.3	2020	00 5	2089	100.6	2120	
OX	11.1	2031	04.1	2040	07.3	2010	30.5	2003	100.0	4140	

IHLEQ = 1. THEREFORE FRICTION LOSS (HL) IS CALCULATED AS A FUNCTION OF PROFILE TYPE, WHICH CAN VARY FROM REACH TO REACH. SEE DOCUMENTATION FOR DETAILS. 22.06

FLOW DISTRIBUTION FOR SECNO* CWSEL= 4.65 STA= 1997. 2124. PER Q= 100.0 AREA= 585.9 VEL-5.9 DEPTH= 6.6 FLOW DISTRIBUTION FOR SECNO-4.67 CWSEL-STA= 2007. 2114. PER Q= 100.0 AREA= 642.1 VEL-5.4 DEPTH-6.4 FLOW DISTRIBUTION FOR SECNO= 4.82 CWSEL=
 873.
 900.
 939.
 1103.
 1118.
 1124.
 1158.
 1166.
 1236.
 1550.
 1556.

 =
 0.1
 0.1
 83.2
 1.2
 0.1
 0.2
 0.3
 2.4
 12.4
 0.1
 STA= PER Q= 0.1 7.5 9.5 13.7 1086.0 AREA= 42.0 VEL. 0.3 0.3 2.7 1.0 0.6 DEPTH= 0.4 0.4 7.1 2.8 1.2 FLOW DISTRIBUTION FOR SECNO= 4.90 CWSEL= ---------

STA=	17	75.	1933.	1953.	1973.	2000.	2023		2067.	2200.	2300.	2370. 2376.
PER	Q=	5.1	5.1	7 5.3	3.	7	5.0	48.1	11.5	5 9.3	6.2	0.2
ARE	A=	210.6	104.3	3 100.3	3 90.	9 1	01.5	352.9	283.0	221.5	151.6	5 7.3
VE	La	0.8	1.5	1.8	8 1.	4	1.7	4.7	1.4	1.5	5 1.4	0.9
DEPT	H=	1.3	5.2	\$ 5.0	3.	4	4.4	8.0	2.1	2.2	2.2	1.1

22.55

24.30

24.77

0.5 0.7

0.3 1.8

0.2 0.3 2.4 12.4 10.7 14.0 115.7 566.1

0.7

1.7

0.8

1.8

5.4

0.5

0.9

FLOW DISTRIBUTION FOR SECNO= 5.55 CWSEL= 36.36

S	TA*	1586.	1650.	1670.	1700.	1720.	1735.	2020. 2070.
	PER Q=	5.1	8 5.2	11.6	7.7	7 3.9	5.3	60.4
	AREA=	92.5	5 57.3	108.4	72.3	43.0	161.1	343.7
	VEL=	2.1	2 3.2	3.7	3.7	7 3.2	1.1	6.1
	DEPTH=	1.5	5 2.9	3.6	3.6	5 2.9	0.6	7.1

17													
Page													
	A3713												
	L-BANK R-BANK SSTA ERDST												
.DAT	SS SS												
CAPC875	TOP 1010												
le: S	HL VOL WTN CORAR								76.				
Data Pi	08 R ONT								20 0.3 0.3 0.3				
.52	AR XX	40.49		40.78		40.99		41.50	2075 0.6 0.5 1.0	42.24			
sion: 6	BC ACH XNCH IDC	r.a		T's		17. 1		-T	2050. 0 2	5			
HNVer	SELK LOB NL TRIAL	CHSE	065.	CWSE	939.	CWSE		CWSE	010. 2. 60. 1.	CWSE			
50:57	5 X X		1. 2. 2. 468.5 4.0		4. 35.8 465.6 4.0 6.4				0. 2 88.2 547.5 3.1 9.1				
mo: 13:	CRIM OROB VROB XLOB	5.90	157 0.0 0.5 0.5 0.7	5.93	0.0 1.3 0.6 1.1	5.95		5.99	8.4 8.4 00.0 0.8 2.0	6.12			
Run 71	CWSEL OCH VCH XLCH	CNO.	1570. .4 .8 .0	CNO	1492. .7 .3	CNO.		CNO.	1850. 1.9 2.0 2	CNO=			
16N0	ar Br	FOR SE	1540.	POR SE	1469. 52 52 2	POR SE	.6771	POR SE	1730. 240 2	POR SE	2059.		
e: 18N	DEP 010 VIO XLO	IBUTION	39. 0.8 0.5 0.5	IBUTION	68. 1.3 1.1	IBUTION	93. 100.0 547.5 3.5	IBUTION	22. 5.6 0.8	IBUTION	06. 100.0 480.1 10.1		
Run Date	SECNO Q TIME SLOPE	FLOW DISTR.	STA= 15 PER Q= AREA= VEL= DEPTH=	FLOW DISTR	STA= 14 PER Q= AREA= VEL= DEPTH=	FLOW DISTR.	PER Q= AREA= AREA= DEPTH=	FLOW DISTR	STA= 17 PER Q= AREA= VEL= DEPTH=	FLOW DISTR.	STA= 20 PER Q= AREA= VEL= DEPTH=		

Run Date:	18NOV97	Run Time	13:50:57	HMVer:	ion: 6.52	Data	File: SC	APC875.DAT	
SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR ICONT	HL VOL WTN CORAR	OLOSS TWA ELMIN TOPWID	L-BANK ELEV R-BANK ELEV SSTA ENDST
FLOW DISTRIB	UTION FOR	SECNO=	6.14	CWSEI	.= 42.	44			
STA* 2011 PER Q= AREA* VEL* DEPTH*	. 2093. 100.0 565.1 3.4 7.6								
FLOW DISTRIB	UTION FOR	SECNO=	6.32	CWSEL		43			
STA= 2015 PER Q= AREA= VEL= DEPTH=	. 2051. 100.0 397.3 4.9 11.0								
FLOW DISTRIB	UTION FOR	SECNO=	6.77	CWSEI	45.	59			
STA= 2003 PER Q= AREA= VEL= DEPTH=	. 2049. 100.0 389.8 5.0 8.5								
FLOW DISTRIB	UTION FOR	SECNO	7.45	CWSEL	= 50.	50			
STA= 2000 PER Q= AREA= VEL= DEPTH=	. 2063. 100.0 438.1 4.4 7.0								
FLOW DISTRIB	UTION FOR	SECNO=	8.77	CWSEL		14			
STA= 2002 PER Q= AREA= VEL= DEPTH=	2032. 100.0 247.6 7.2 8.3								

and Market Programs and Programs for programs where the programs of the progra

L-BANK ELEV R-BANK ELEV SSTA ENOST Run Time: 13:50:57 HMVersion: 6.52 Data File: SCAPC875.DAT OLOSS TWA ELMIN TOPWID HL VOL WTN CORAR HV AROB XNR ICONT 2061. 37.95 76.19 85.21 84.67 86.64 34.4 2.3 SCAPPOOSE CREEK MILE 4.11 TO 10.01 CORPS OF ENGINEERS , PLOOD PLAIN MANAGEMENT SERVICES SCAPPOOSE CREEK 50-YEAR FLOOD PROFILE ACH XXXCH IDC 2046. CWSEL= CWSEL= CWSEL-CWSEL= CWSEL= 69.3 00 00 413. ITRIAL WSELK ALOB XNL 2105. 1994. 0.0 0.0 2.3 43.1 2100. 1982. CRIMS QROB VROB XLOBR 9.86 9.73 9.97 66'6 10.00 2.3 31.4 1.3 19.2 359.1 3.6 . 2037. 5. 2037. 100.0 26.0 6.6 2059. 1882. CWSEL OCH VCH XLCH FLOW DISTRIBUTION FOR SECNO= FLOW DISTRIBUTION FOR SECNO= 1967. 2000. 201 0.1 97.6 4.4 240.6 0.4 7.0 0.1 4.1 FLOW DISTRIBUTION FOR SECNO= STA= 1522. 1802. 180 PER Q= 3.2 4.6 AREA= 213.0 131.1 VEL= 0.3 0.6 DEPTH= 0.8 1.6 FLOW DISTRIBUTION FOR SECNO= FLOW DISTRIBUTION POR SECNO= STA= 2004. 2031. PER Q= 100.0 AREA= 206.2 VEL= 8.1 DEPTH= 7.6 2042. 100.0 252.4 6.9 0.0 1995. 0.9 26 0.2 26 0.1 Run Date: 18NOV97 DEPTH QLOB XLOBL 6.6 STA= 1967. PER Q= 0 AREA= 4 VEL= 0 DEPTH= 0 PER Q= 1984. STA= 2004. VEL.* TIME SECNO PER Q= AREA= "NEL" "HL430 222 0

\$	tun Date	: 18NOV	97 Run	Time: 13:50	:57 HMVe	rsion: 6.5	2 Data	File: S	CAPC875.DAT		Page
J1	ICHECK	INQ	NINV	IDIR	STRT	METRIC	HVINS	Q	WSEL	FQ	
		3			.00010				21.5		
12	NPROF	IPLOT	PRFVS	XSECV	XSECH	FN	ALLDC	IBW	CHNIM	ITRACE	
	2		-1								
							DISPLAN AD				
ROI	TLE TYP	E, WHICH	CAN VARY	FROM REACH	TO REACH.	SEE DOCUME	NTATION PO	8			
LON	DISTRI	BUTION F	OR SECNO*	4.65	CWS	EL= 23	. 82				
PI	195 IR Q= IREA= VEL= IPTH=	1. 21 100.0 796.8 6.6 6.3	24.								
LON	DISTRI	BUTION F	OR SECNO.	4.67	CWS	EL= 24	.26				
PE	200 ER Q= IREA= VEL= IPTH=	7. 21 100.0 813.9 6.5 8.1	14.								
PLOA	DISTRI	BUTION F	OR SECNO-	4.82	CWS	EL= 26	.02				
PE	GER Q= REA= VEL= CPTH=	7. 9 2.8 264.2 0.6 0.9	50. 110 67.9 1349.2 2.7 8.8	03. 1166. 3.0 165.4 1.0 2.6	1236. 4.5 21 236.2 1106 1.0 1 3.4 3	1550. .5 0. .5 42. .0 0. .5 0.	1645. 3 2 4 4				
FLOA	DISTRI	BUTION F	OR SECNO=	4.90	CWS	EL= 26	. 39				
PE	173 IR Q= IREA= VEL= IPTH=	7. 19 6.5 362.5 0.9 2.2	00. 193 3.2 131.5 1.3 4.0	3. 1953 4.8 136.7 1.8 6.8	1973. 4.5 3 132.7 134 1.8 1 6.6 5	2000. .8 4. .6 138. .5 1. .0 6.	2023. 5 35.2 8 424.1 7 4.4 0 9.6	2067. 3.8 119.9 1.7 3.6	2100. 22 12.2 378.4 1.7 3.8	00. 2300. 12.4 383.4 2 1.7 3.8	2370. 2403 8.5 0.5 64.9 25.8 1.7 1.0 3.8 0.8

PLOW DISTRIBUTION FOR SECNO* 5.55 CWSEL* 38.09 STA* 1566. 1650. 1670. 1700. 1720. 1735. 1760. 1900. 2020. 2070. PER Q* 10.5 6.0 11.5 7.7 4.5 3.9 4.1 7.7 44.2 AREA* 217.6 91.9 160.3 106.9 68.9 77.3 233.0 311.2 428.0 VEL* 2.5 3.4 3.8 3.8 3.4 2.6 0.9 1.3 5.4 DEFTH* 2.6 6.5.3 5.3 4.6 3.1 1.7 2.6 8.7 FLOW DISTRIBUTION FOR SECNO* 5.90 CWSEL* 41.71 STA* 1538. 1540. 1570. 1572. 1995. 2065. PER Q* 0.1 5.0 0.1 2.4 52.5 AREA* 2.6 81.4 2.6 67.4 545.1 VEL* 0.8 1.8 0.6 1.0 4.9 DEFTH* 1.4 2.7 1.4 0.2 8.5 FLOW DISTRIBUTION FOR SECNO* 5.93 CWSEL* 42.09 STA* 1467. 1469. 1492. 1494. 1939. PER Q* 0.1 6.5 0.1 93.3 AREA* 3.3 82.9 3.3 565.4 VEL* 0.8 2.3 0.8 4.8 DEFTH* 1.8 3.6 1.8 7.1 FLOW DISTRIBUTION FOR SECNO* 5.95 CWSEL* 42.33 STA* 1690. 1779. PER Q* 100.0 AREA* 655.2 VEL* 4.4 DEFTH* 7.9 FLOW DISTRIBUTION FOR SECNO* 5.99 CWSEL* 43.09 STA* 173. 1730. 1850. 1950. 2010. 2050. 2075. 2079. PER Q* 0.1 1.5 14.8 7.1 4.4 2.0 0.1 AREA* 24.8 430.5 858.8 642.8 13.3 5.6 4.7 4.6 VEL* 0.1 1.5 14.8 7.1 4.4 2.0 0.1 AREA* 24.8 430.6 1.950. 2010. 2050. 2075. 2079. PER Q* 0.1 1.5 14.8 7.1 4.4 2.0 0.1 AREA* 24.8 430.5 1358.8 642.8 13.3 5.6 4.7 4.6 VEL* 0.1 1.5 14.8 7.1 4.4 2.0 0.1 AREA* 24.8 430.6 158.8 642.8 13.5 64.7 4.6 VEL* 0.1 0.1 1.2 3.5 1.0 0.9 0.5 DEFTH* 1.4 3.6 1.2 3.5 1.0 0.9 0.5 DEFTH* 1.4 3.6 1.2 3.5 1.0 0.9	Q TIME SLOP	0 D 0 V 8 X	LOB LOB LOBL	QCH QCH VCH XLCH		RIWS ROB ROB LOBR		WSELK ALOB XNL ITRIAL		EG ACH XNCH IDC	2	IV LROB INR ICONT	VOL WTN CORAR	1	OLOSS TWA ELMIN TOPWID	R-BANK SSTA ENDST	ELI
PLOW DISTRIBUTION FOR SECNO: 5.55 CMSL: 38.09 STA: 1566. 1650. 1670. 1700. 1720. 1735. 1760. 1900. 2020. 2070. PER Q: 10.5 6.0 11.5 7.7 4.5 3.9 4.1 7.7 44.2 AREA: 217.6 91.9 160.3 106.9 68.9 77.3 233.0 311.2 428.0 VEL: 2.5 3.4 3.8 3.8 3.4 2.6 0.9 1.3 5.4 DEPTH: 2.6 4.6 5.3 5.3 4.6 3.1 1.7 2.6 8.7 FLOW DISTRIBUTION FOR SECNO: 5.90 CWSEL: 41.71 STA: 1538. 1540. 1570. 1572. 1995. 2065. PER Q: 0.1 5.0 0.1 2.4 92.5 AREA: 2.6 81.4 2.6 67.4 545.1 VEL: 0.8 1.8 0.8 1.0 4.9 DEPTH: 1.4 2.7 1.4 0.2 8.5 FLOW DISTRIBUTION FOR SECNO: 5.93 CWSEL: 42.09 STA: 1467. 1469. 1492. 1494. 1939. PER Q: 0.1 6.5 0.1 93.3 AREA: 3.3 82.9 3.3 565.4 VEL: 0.8 2.3 0.8 4.8 DEPTH: 1.8 3.6 1.8 7.1 FLOW DISTRIBUTION FOR SECNO: 5.95 CMSEL: 42.33 STA: 1690. 1779. PER Q: 100.0 AREA: 655.2 VEL: 4.4 DEPTH: 7.9 FLOW DISTRIBUTION FOR SECNO: 5.99 CMSEL: 43.09 STA: 1713. 1730. 1850. 1950. 2010. 2050. 2075. 2079. PER Q: 0.1 1.5 14.8 77.1 4.4 2.0 0.1 AREA: 24.8 430.6 358.8 642.8 123.5 64.7 4.6 VEL: 0.1 0.1 1.2 3.5 1.0 0.9 0.5 DEPTM: 1.4 3.6 1.8 7.1 PER Q: 0.1 0.1 1.2 3.5 1.0 0.9 0.5 PER Q: 0.1 0.1 1.2 3.5 1.0 0.9 0.5 DEPTM: 1.4 3.6 1.8 77.1 4.4 2.0 0.1 AREA: 24.8 430.6 358.8 642.8 123.5 64.7 4.6 VEL: 0.1 0.1 1.2 3.5 1.0 0.9 0.5 DEPTM: 1.4 3.6 1.8 77.1 4.4 2.0 1.10																	
STA= 1566. 1650. 1670. 1700. 1720. 1735. 1760. 1900. 2020. 2070. PER Q= 10.5 6.0 11.5 7.7 4.5 3.9 4.1 7.7 442. AREA= 217.6 91.9 160.3 106.9 68.9 77.3 233.0 311.2 428.0 VEL= 2.5 3.4 3.8 3.8 3.4 2.6 0.9 1.3 5.4 DEPTM= 2.6 4.6 5.9 CWSEL= 41.71 STA= 1538. 1540. 1570. 1572. 1995. 2065. PER Q= 0.1 5.0 0.1 2.4 92.5 AREA= 2.6 81.4 2.6 67.4 545.1 VEL= 0.8 1.8 0.8 1.0 4.9 DEPTM= 1.4 2.7 1.4 0.2 8.5 FLOW DISTRIBUTION FOR SECNO= 5.93 CWSEL= 42.09 STA= 1467. 1469. 1492. 1494. 1939. PER Q= 0.1 6.5 0.1 93.3 AREA= 3.3 82.9 3.3 565.4 VEL= 0.8 2.3 0.8 4.8 DEPTM= 1.8 3.6 1.8 7.1 FLOW DISTRIBUTION FOR SECNO= 5.95 CWSEL= 42.33 STA= 1690. 1779. PER Q= 100.0 AREA= 655.2 VEL= 4.4 DEPTM= 7.9 FLOW DISTRIBUTION FOR SECNO= 5.99 CWSEL= 43.09 STA= 1713. 1730. 1850. 1950. 2010. 2050. 2075. 2079. PER Q= 0.1 1.5 14.8 77.1 4.4 2.0 0.1 AREA= 43.0 6 42.8 123.5 64.7 4.6 VEL= 0.1 0.1 1.2 3.5 1.0 0.9 0.5 DEPTM= 1.4 35.1 1.2 3.5 1.0 0.9 0.5 DEPTM= 1.4 3.5 1.8 7.1 4.4 2.0 0.1 AREA= 643.0 1.2 0.0 0.0 AREA= 643.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	PLOW DIS	TRIBUTI	ON FOR	SECNO*	3			CW	ISEL=		38.09						
AREA* 217.6 91.9 160.3 106.9 68.9 77.3 233.0 311.2 428.0 VEL* 2.5 3.4 3.8 3.8 3.4 2.6 0.9 1.3 5.4 DEPTH* 2.6 4.6 5.3 5.3 4.6 3.1 1.7 2.6 8.7 FLOW DISTRIBUTION FOR SECNO* 5.90 CWSEL* 41.71 STA* 1538. 1540. 1570. 1572. 1995. 2065. PER Q* 0.1 5.0 0.1 2.4 92.5 AREA* 2.6 81.4 2.6 67.4 545.1 VEL* 0.8 1.8 0.8 1.0 4.9 100.1 100.2 8.5 FLOW DISTRIBUTION FOR SECNO* 5.93 CWSEL* 42.09 42.09 42.09 STA* 1467. 1469. 1492. 1494. 1939. 42.09 42.09 PER Q* 0.1 6.5 0.1 93.3 55.4 42.09 42.09 STA* 1690. 1779. PER Q* 100.0<	STA=	1566.	1650	. 167		1700		1720.	1 5	735.	176	50.	1900. 7	2020	. 2070).	
VEL* 2.5 3.4 3.8 3.8 3.4 2.6 0.9 1.3 5.4 DEPTH* 2.6 4.6 5.3 5.3 4.6 3.1 1.7 2.6 8.7 FLOW DISTRIBUTION FOR SECNO* 5.90 CWSEL* 41.71 STA* 1538. 1540. 1570. 1572. 1995. 2065. PER Q* 0.1 5.0 0.1 2.4 92.5 AREA* 2.6 81.4 2.6 67.4 54.1 VEL* 0.8 1.8 0.8 1.0 4.9 1000000000000000000000000000000000000	AREA=	217	.6	91.9	160.3	ŝ	106.5	. 6	8.9		77.3	233.0	311.	2 .	428.0		
DEPTH= 2.6 4.6 5.3 5.3 4.6 3.1 1.7 2.6 8.7 FLOW DISTRIBUTION FOR SECNO= 5.90 CWSEL= 41.71 STA= 1538. 1540. 1570. 1572. 1995. 2065. PER Q= 0.1 5.0 0.1 2.4 92.5 AREA= 2.6 81.4 2.6 67.4 545.1 VEL= 0.8 1.8 0.8 1.0 4.9 DEPTH= 1.4 2.7 1.4 0.2 8.5 FLOW DISTRIBUTION FOR SECNO= 5.93 CWSEL= 42.09 STA= 1467. 1469. 1492. 1494. 1939. PER Q= 0.1 6.5 0.1 93.3 AREA= 3.3 82.9 3.3 565.4 VEL= 0.8 2.3 0.8 4.8 DEPTH= 1.8 3.6 1.8 7.1 FLOW DISTRIBUTION FOR SECNO= 5.95 CWSEL= 42.33 STA= 1690. 1779. PER Q= 100.0 AREA= 4.4 DEPTH= 7.9 FLOW DISTRIBUTION FOR SECNO= 5.99 CWSEL= 43.09 STA= 1713. 1730. 1850. 1950. 2010. 2050. 2075. 2079. PER Q= 0.1 1.5 14.8 77.1 4.4 2.0 0.1 AREA= 24.8 430.6 358.8 642.8 123.5 64.7 4.6 VEL= 0.1 0.1 1.2 3.5 1.0 0.9 0.5 DEPTH= 1.4 3.6 10.7 3.1 2.6 1.0	VEL=	2	.5	3.4	3.8	3	3.8	3	3.4		2.6	0.9	1.	3	5.4		
FLOW DISTRIBUTION FOR SECNO# 5.90 CWSEL# 41.71 STA# 1538. 1540. 1570. 1572. 1995. 2065. PER Q# 0.1 5.0 0.1 2.4 92.5 AREA# 2.6 81.4 2.6 67.4 545.1 VEL# 0.8 1.8 0.8 1.0 4.9 DEPTH# 1.4 2.7 1.4 0.2 8.5 FLOW DISTRIBUTION FOR SECNO# 5.93 CWSEL# 42.09 STA# 1467. 1469. 1492. 1494. PER Q# 0.1 6.5 0.1 93.3 AREA# 3.8 82.9 3.3 565.4 VEL# 0.8 2.3 0.8 4.8 DEPTH# 1.8 3.6 1.8 7.1 FLOW DISTRIBUTION FOR SECNO# 5.95 CWSEL# 42.33 STA# 1690. 1779. PER Q# 0.0.0 AREA# 15.4 DEPTH# 7.9 200.0 2050. 2075. FROW DISTRIBUTION FOR SECNO# 5.99 CWSEL# 43.09 STA# 1713. 1730. 1850. 1950. PER Q# 0.1 1.5 </td <td>DEPTH=</td> <td>2</td> <td>.6</td> <td>4.6</td> <td>5.3</td> <td>8</td> <td>5.3</td> <td>3</td> <td>4.6</td> <td></td> <td>3.1</td> <td>1.7</td> <td>2.</td> <td>6</td> <td>8.7</td> <td></td> <td></td>	DEPTH=	2	.6	4.6	5.3	8	5.3	3	4.6		3.1	1.7	2.	6	8.7		
STA= 1538. 1540. 1570. 1572. 1995. 2065. PER Q= 0.1 5.0 0.1 2.4 92.5 AREA= 2.6 81.4 2.6 67.4 545.1 VEL= 0.8 1.8 0.8 1.0 4.9 DEPTH= 1.4 2.7 1.4 0.2 8.5 FLOW DISTRIBUTION FOR SECNO* 5.93 CWSEL* 42.09 STA= 1467. 1469. 1492. 1494. PER Q* 0.1 6.5 0.1 93.3 AREA* 3.3 82.9 3.3 565.4 VEL= 0.8 2.3 0.8 4.8 DEPTH= 1.8 3.6 1.8 7.1 FLOW DISTRIBUTION FOR SECNO* 5.95 CWSEL* 42.33 STA* 1690. 1779. PER Q* 100.0 AREA* 655.2 VEL* 4.4 DEPTH= 7.9 FLOW DISTRIBUTION FOR SECNO* 5.99 CWSEL* 43.09 STA* 1713. 1730. <td>FLOW DIS</td> <td>TRIBUTI</td> <td>ON FOR</td> <td>SECNO=</td> <td>5</td> <td>5.90</td> <td></td> <td>CW</td> <td>SEL=</td> <td></td> <td>41.71</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	FLOW DIS	TRIBUTI	ON FOR	SECNO=	5	5.90		CW	SEL=		41.71						
PER Q= 0.1 5.0 0.1 2.4 92.5 AREA* 2.6 81.4 2.6 67.4 545.1 VEL* 0.8 1.8 0.8 1.0 4.9 DEPTH* 1.4 2.7 1.4 0.2 8.5 FLOW DISTRIBUTION FOR SECNO* 5.93 CWSEL* 42.09 STA* 1467. 1469. 1492. 1494. PER Q* 0.1 6.5 0.1 93.3 AREA* 3.3 82.9 3.3 565.4 VEL* 0.8 2.3 0.8 4.8 DEPTH* 1.8 3.6 1.8 7.1 FLOW DISTRIBUTION FOR SECNO* 5.95 CWSEL* 42.33 STA* 1690. 1779. PER Q* 100.0 AREA* 655.2 VEL* 43.09 FLOW DISTRIBUTION FOR SECNO* 5.99 CWSEL* 43.09 STA* 1713. 1730. 1850. 1950. 2010. 2050. 2079. PER Q* 0.1 1.5 14.8 77.1 </td <td>STA=</td> <td>1538.</td> <td>1540</td> <td>. 157</td> <td>0.</td> <td>1572</td> <td></td> <td>1995.</td> <td>2</td> <td>065.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	STA=	1538.	1540	. 157	0.	1572		1995.	2	065.							
AREA* 2.6 81.4 2.6 67.4 545.1 VEL* 0.8 1.8 0.8 1.0 4.9 DEPTH* 1.4 2.7 1.4 0.2 8.5 FLOW DISTRIBUTION FOR SECNO* 5.93 CWSEL* 42.09 STA* 1467. 1469. 1492. 1494. PER Q* 0.1 6.5 0.1 93.3 AREA* 3.8 82.9 3.3 565.4 VEL* 0.8 2.3 0.8 4.8 DEPTH* 1.8 3.6 1.8 7.1 FLOW DISTRIBUTION FOR SECNO* 5.95 CWSEL* 42.33 STA* 1690. 1779. PER Q* 100.0 AREA* 655.2 VEL* 4.4 DEPTH* 7.9 PHOW DISTRIBUTION FOR SECNO* 5.99 CWSEL* 43.09 STA* 1713. 1730. 1850. 1950. 2010. 2050. 2079. PER Q* 0.1 1.5 14.8 77.1 4.4 2.0 0.1 PER Q* <td>PER Q=</td> <td>0</td> <td>.1</td> <td>5.0</td> <td>0.1</td> <td></td> <td>2.4</td> <td>4 9</td> <td>2.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	PER Q=	0	.1	5.0	0.1		2.4	4 9	2.5								
DEPTH= 1.4 2.7 1.4 0.2 8.5 FLOW DISTRIBUTION FOR SECNO= 5.93 CWSEL= 42.09 STA= 1467. 1469. 1492. 1494. 1939. PER 0= 0.1 6.5 0.1 93.3 AREA= 3.3 82.9 3.3 565.4 VEL= 0.8 2.3 0.8 4.8 DEPTH= 1.8 3.6 1.8 7.1 FLOW DISTRIBUTION FOR SECNO= 5.95 CWSEL= 42.33 STA= 1690. 1779. PER Q= 100.0 AREA= 655.2 VEL= 4.4 DEPTH= 7.9 FLOW DISTRIBUTION FOR SECNO= 5.99 CWSEL= 43.09 STA= 1713. 1730. 1850. 1950. 2010. 2050. 2075. 2079. PER Q= 0.1 1.5 14.8 77.1 4.4 2.0 0.1 AREA= 24.8 430.6 358.8 642.8 123.5 64.7 4.6 VEL= 0.1 0.1 1.2 3.5 1.0 0.9 0.5 DEPTH= 1.4 3.6 1.0 CMSEL= 0.1 0.1 0.1 1.2 0.5 1.0 0.9 0.5 DEPTH= 1.4 3.6 3.6 10.7 3.1 2.6 1.0	AREA=	-	.0	81.4	2.0	2	67.4	6 54	4.9								
FLOW DISTRIBUTION FOR SECNO* 5.93 CWSEL* 42.09 STA* 1467. 1469. 1492. 1939. PER 0* 0.1 6.5 0.1 93.3 AREA* 3.3 82.9 3.3 565.4 VEL* 0.8 2.3 0.8 4.8 DEPTH* 1.8 3.6 1.8 7.1 FLOW DISTRIBUTION FOR SECNO* 5.95 CWSEL* 42.33 STA* 1690. 1779. PER 0* 100.0 AREA* 655.2 VEL* 4.4 DEPTH* 7.9 FLOW DISTRIBUTION FOR SECNO* 5.99 CWSEL* 43.09 STA* 1713. 1730. 1850. 1950. 2010. 2050. 2075. 2079. PER 0* 0.1 1.5 14.8 77.1 4.4 2.0 0.1 AREA* 24.8 430.6 358.8 642.8 123.5 64.7 4.6 VEL* 0.1 0.1 1.2 3.5 1.0 0.9 0.5 DEPTH* 1	DEPTH=	1	.4	2.7	1.4	1	0.2	2	8.5								
STA= 1467. 1469. 1494. 1939. PER Q= 0.1 6.5 0.1 93.3 AREA= 3.3 82.9 3.3 565.4 VEL= 0.8 2.3 0.8 4.8 DEPTH= 1.8 3.6 1.8 7.1 FLOW DISTRIBUTION FOR SECNO= 5.95 CWSEL= 42.33 STA= 1690. 1779. PER Q= 100.0 AREA= 655.2 VEL= 4.4 DEPTH= 7.9 FLOW DISTRIBUTION FOR SECNO= 5.99 CWSEL= 43.09 STA= 1713. 1730. 1850. 1950. 2010. 2050. 2075. 2079. PER Q= 0.1 1.5 14.8 77.1 4.4 2.0 0.1 AREA= 24.8 430.6 358.8 642.8 123.5 64.7 4.6 VEL= 0.1 0.1 1.2 3.5 1.0 0.9 0.5 DEPTH= 1.4 3.6 10.7 3.1 2.6	FLOW DIS	TRIBUTI	ON FOR	SECNO*		5.93		C	SEL=		42.09						
PER Q: 0.1 6.5 0.1 93.3 AREA: 3.3 82.9 3.3 565.4 VEL: 0.8 2.3 0.8 4.8 DEPTH: 1.8 3.6 1.8 7.1 FLOW DISTRIBUTION FOR SECNO: 5.95 CWSEL: 42.33 STA: 1690. 1779. PER Q: 100.0 AREA: 655.2 VEL: 4.4 DEPTH: 7.9 FLOW DISTRIBUTION FOR SECNO: 5.99 CWSEL: 43.09 STA: 1713. 1730. 1850. 1950. 2010. 2050. 2075. 2079. PER Q: 0.1 1.5 14.8 77.1 4.4 2.0 0.1 AREA: 24.8 430.6 358.8 642.8 123.5 64.7 4.6 VEL: 0.1 0.1 1.2 3.5 1.0 0.9 0.5 DEPTH: 1 4 3 6 10.7 3.1 2.6 1.0	STA	1467.	1469	149	2.	1494		1939.									
AREA* 3.3 82.9 3.3 565.4 VEL* 0.8 2.3 0.8 4.8 DEPTH* 1.8 3.6 1.8 7.1 FLOW DISTRIBUTION FOR SECNO* 5.95 CWSEL* 42.33 STA* 1690. 1779. PER 0* 100.0 AREA* 655.2 VEL* 4.4 DEPTH* 7.9 FLOW DISTRIBUTION FOR SECNO* 5.99 CWSEL* 43.09 STA* 1713. 1730. 1850. 1950. 2010. 2050. 2075. 2079. PER 0* 0.1 1.5 14.8 77.1 4.4 2.0 0.1 AREA* 24.8 430.6 358.8 642.8 123.5 64.7 4.6 VEL* 0.1 0.1 1.2 3.5 1.0 0.9 0.5 DEPTH* 1.4 3.6 10.7 3.1 2.6 1.0	PER Q#	0	.1	6.5	0.1		93.3	3									
VEL® 0.8 2.3 0.8 4.8 DEPTH# 1.8 3.6 1.8 7.1 FLOW DISTRIBUTION FOR SECNO® 5.95 CWSEL# 42.33 STA# 1690. 1779. PER Q# 100.0 AREA# 655.2 VEL# 4.4 DEPTH# 7.9 FLOW DISTRIBUTION FOR SECNO# 5.99 CWSEL# 43.09 STA# 1713. 1730. 1850. 1950. 2010. 2050. 2075. 2079. PER Q# 0.1 1.5 14.8 77.1 4.4 2.0 0.1 AREA# 24.8 430.6 358.8 642.8 123.5 64.7 4.6 VEL# 0.1 0.1 1.2 3.5 1.0 0.9 0.5 DEPTH# 1 4 3.6 10.7 3.1 2.6 1.0	AREA=	3	.3	82.9	3.3	3	565.4	4									
FLOW DISTRIBUTION FOR SECNO# 5.95 CWSEL# 42.33 STA# 1690. 1779. PER Q# 100.0 AREA# 655.2 VEL# 4.4 DEPTH# 7.9 FLOW DISTRIBUTION FOR SECNO# 5.99 CWSEL# 43.09 STA# 1713. 1730. 1850. 1850. 1950. 2010. 2050. 2075. 2079. PER Q# 0.1 1.5 14.8 77.1 4.4 2.0 0.1 AREA# 24.8 430.6 358.8 642.8 123.5 64.7 4.6 VEL# 0.1 0.1 1.2 3.5 1.0 0.9 0.5 DEPTH## 1.4 3.6 10.7 3.1 2.6 1.0	DEPTH=	1	.8	2.3	0.8	8	7.1	8									
STA* 1690. 1779. PER Q* 100.0 AREA* 655.2 VEL* 4.4 DEPTH* 7.9 FLOW DISTRIBUTION FOR SECNO* 5.99 CWSEL* 43.09 STA* 1713. 1730. 1850. 1950. 2010. 2050. 2075. 2079. PER Q* 0.1 1.5 14.8 77.1 4.4 2.0 0.1 AREA* 24.8 430.6 358.8 642.8 123.5 64.7 4.6 VEL* 0.1 0.1 1.2 3.5 1.0 0.9 0.5 DEPTH* 1.4 3.6 10.7 3.1 2.6 1.0	PLOW DIS	TRIBUTI	ON FOR	SECNO=		5.95		Ch	SEL=		42.33						
PER Q= 100.0 AREA= 655.2 VEL= 4.4 DEPTH= 7.9 FLOW DISTRIBUTION FOR SECNO= 5.99 CWSEL= 43.09 STA= 1713. 1730. 1850. 1950. 2010. 2050. 2075. 2079. PER Q= 0.1 1.5 14.8 77.1 4.4 2.0 0.1 AREA= 24.8 430.6 358.8 642.8 123.5 64.7 4.6 VEL= 0.1 0.1 1.2 3.5 1.0 0.9 0.5 DEPTH= 1.4 3.6 10.7 3.1 2.6 1.0	STA=	1690.	1779														
AREA= 655.2 VEL= 4.4 DEPTH= 7.9 FLOW DISTRIBUTION FOR SECNO= 5.99 CWSEL= 43.09 STA= 1713. 1730. 1850. 1950. 2010. 2050. 2075. 2079. PER Q= 0.1 1.5 14.8 77.1 4.4 2.0 0.1 AREA= 24.8 430.6 358.8 642.8 123.5 64.7 4.6 VEL= 0.1 0.1 1.2 3.5 1.0 0.9 0.5 DEPTH= 1.4 3.6 10.7 3.1 2.6 1.0	PER Q=	100	.0														
VEL 7.9 DEPTH= 7.9 FLOW DISTRIBUTION FOR SECNO= 5.99 CWSEL= 43.09 STA= 1713. 1730. 1850. 1950. 2010. 2050. 2075. 2079. PER Q= 0.1 1.5 14.8 77.1 4.4 2.0 0.1 AREA= 24.8 430.6 358.8 642.8 123.5 64.7 4.6 VEL= 0.1 0.1 1.2 3.5 1.0 0.9 0.5 DEPTH= 1.4 3.6 10.7 3.1 2.6 1.0	AREA=	655	.2														
FLOW DISTRIBUTION FOR SECNO= 5.99 CWSEL= 43.09 STA= 1713. 1730. 1850. 1950. 2010. 2050. 2075. 2079. PER Q= 0.1 1.5 14.8 77.1 4.4 2.0 0.1 AREA= 24.8 430.6 358.8 642.8 123.5 64.7 4.6 VEL= 0.1 0.1 1.2 3.5 1.0 0.9 0.5 DEPTH= 1.4 3.6 3.6 10.7 3.1 2.6 1.0	DEPTH=	7	.9														
STA= 1713. 1730. 1850. 1950. 2010. 2050. 2075. 2079. PER Q= 0.1 1.5 14.8 77.1 4.4 2.0 0.1 AREA= 24.8 430.6 358.8 642.8 123.5 64.7 4.6 VEL= 0.1 0.1 1.2 3.5 1.0 0.9 0.5 DEPTH# 1.4 3.6 3.6 10.7 3.1 2.6 1.0	FLOW DIS	TRIBUTI	ON FOR	SECNO=		5.99		Ci	SEL=		43.09						
PER Q# 0.1 1.5 14.8 77.1 4.4 2.0 0.1 AREA= 24.8 430.6 358.8 642.8 123.5 64.7 4.6 VEL= 0.1 0.1 1.2 3.5 1.0 0.9 0.5 DEPTH= 1.4 3.6 3.6 10.7 3.1 2.6 1.0	STA=	1713.	1730	. 185	0.	1950		2010.	2	050.	203	15.	2079.				
AREA= 24.8 430.6 358.8 642.8 123.5 64.7 4.6 VEL= 0.1 0.1 1.2 3.5 1.0 0.9 0.5 DEPTH= 1.4 3.6 3.6 10.7 3.1 2.6 1.0	PER Q=	0	.1	1.5	14.8	3	77.1	1	4.4		2.0	0.1					
VEL= 0.1 0.1 1.2 3.5 1.0 0.9 0.5 DEPTH= 1.4 3.6 3.6 10.7 3.1 2.6 1.0	AREA=	24	.8	430.6	358.8	3	642.8	8 12	13.5		64.7	4.6					
	DEPTH=	1	4	3.6	3.6	6 5	10.	7	3.1		2.6	1.0					

Page 21

L-BANK ELEV R-BANK ELEV SSTA ENDST Run Time: 13:50:57 HMVersion: 6.52 Data File: SCAPC875.DAT OLOSS TWA ELMIN TOPWID HL VOL WTN CORAR HV AROB XMR ICONT 55.7 55.3 495.3 10.8 47.88 43.80 44.16 45.34 52.33 EC ACH XONCH IDC 2003. CWSEL= CWSEL= CWSEL® CWSBL= CWSEL # 17.8 415.3 4.0 WSELK ALOB XNL ITRIAL 1900. 338.2 3.4 2399. 2063. 1800. CRIMS QROB VROB XLOBR 6.32 6.12 7.45 6.14 6.37 293.2 293.2 2.9 6.0 0.1 98.3 553.1 2000. 2350. 1700. CWSEL OCH VCH XLCH FLOW DISTRIBUTION FOR SECNO= FLOW DISTRIBUTION FOR SECNO# FLOW DISTRIBUTION FOR SECNO= FLOW DISTRIBUTION FOR SECNO= FLOW DISTRIBUTION FOR SECNO= 2.0 68.5 2.3 0.02 26.3 26.3 2.6 2051. 0.1 99.9 2051. 0. 66.2 8. 13.0 0.2 6. 2059. 553.9 553.9 11.6 2011. 2093. C= 100.0 A= 703.7 L= 4.1 H= 8.6 1670. 79.7 0.5 1990. Run Date: 18NOV97 DEPTH QLOB VLOB XLOBL 25.7 FER Q= 2015. PER Q= 99 AREA= 466 VEL= 66 DEPTH= 13 STA= 2006. PER Q= 10 AREA= 55 STA= 1799. STA= 1585. PER Q= SECNO 0 TIME SLOPE PER Q= AREA= VEL= PER Q= AREA= VEL= DEPTH= AREA. VEL. =HT930 =HLd30 VEL-=H1430 STA=

L-BANK ELEV R-BANK ELEV SSTA ENDST OLOSS TWA ELMIN TOPWID HL VOL WTN CORAR KV AROB XNR ICONT RCH XCH XCH WSELK ALOB XNL ITRIAL CRIMS QROB VROB XLOBR CWSEL OCH VCH XLCH DEPTH QLOB VLOBL XLOBL SECNO 0 TIME SLOPE

60.79 CWSEL= 8.77 FLOW DISTRIBUTION FOR SECNO.

77.21 CWSEL= 2231. 0.0 0.0 2212. 9.73 4.08.0 2200. FLOW DISTRIBUTION FOR SECNO. 20.7 20.6 0.9 STA# 2002. 2032. PER Q= 99.2 0 AREA 297.0 20 VEL# 9.0 0 DEPTH= 9.9 0

STA= 1844. 2042. PER Q= 100.0 AREA= 271.6 VEL= 2.5 DEPTH= 6.5

80.97 CWSEL-9.86 FLOW DISTRIBUTION FOR SECNO.

2168. 16.9 2130. 32.4 1.1 2100. 6.3 81.2 2.0 2.0 2059. 85.5 312.3 7.1 2000. STA* 1842. 1900. 200 PER Q* 0.5 5.6 AREA* 19.6 108.1 VEL* 0.3 1.3 DEPTH* 0.3 1.1

85.55 CWSBL= 76.6 FLOW DISTRIBUTION FOR SECNO=

2037. 304.1 6.5 1995. 56.6 0.2 0.2 STA= 1727. PER Q= AREA= VEL= DEPTH= 86.09 CWSEL. 66.6 FLOW DISTRIBUTION FOR SECNO=

2031. 98.5 229.4 10.6 8.4 1869. 77.8 STA= 1573. PER Q= 1 AREA= 77 VEL= 0 DEPTH= 0

Data File: SCAPC875.DAT Run Time: 13:50:57 NMVersion: 6.52 Run Date: 18NOV97 L-BANK ELEV R-BANK ELEV SSTA ENDST DINOSS TWA ELMIN TOPWID HL VOL WTN CORAR HV AROB XXR ICONT EC ACH XDCH WSELK ALOB XNL ITRIAL CRIMS QROB VROB XLOBR CWSEL QCH VCH XLCH DEPTH QLOB VLOBL XLOBL SECNO Q TIME SLOPE

88.63 CWSEL* 10.00 FLOW DISTRIBUTION FOR SECNO=

2068. 71.1 0.6 3.3 2046. 1. 2046. 1. 2046. 2. 2046. 2. 2011. 2.5 67.0 5.6 5.6 80. 20.9 558.2 6.9 5.6 1882. 137.5 1852. 152.9 0.6 3.1 294.0 152.9 294.0 152.9 2.9 1700. 3.9 2.8 2.9 2.9 3.2 1600. 3.9 314.7 288.2 0.2 TA= 1355. PER Q= AREA= 31. VEL= "HLJ30 STA.

222

SCAPPOOSE CREEK MILE 4.11 TO 10.01 CORPS OF ENGINEERS , FLOOD PLAIN MANAGEMENT SERVICES SCAPPOOSE CREEK 100-YEAR FLOOD PROFILE

2 WSEL 21.5 0 NUM METRIC STRT .00010 IDIR MIN 4 ONI J1 ICHECK

ITRACE CHONIM MBI ALLOC č. XSECH XSECV PRPVS IPLOT J2 NPROF

m

-1

INLEQ = 1. THEREPORE PRICTION LOSS (NL) IS CALCULATED AS A FUNCTION OF PROFILE TYPE, WHICH CAN VARY FROM REACH TO REACH. SEE DOCUMENTATION POR DETAILS. 24.40 FLOW DISTRIBUTION FOR SECNO= 4.65 CMSEL= 24.40

STA= 1990. 2124. PER Q= 100.0 AREA= 871.9 VEL= 7.0 DEPTH= 6.7

24.89 CWSEL= 4.67 FLOW DISTRIBUTION FOR SECNO=

2731. 0.0 9.8 0.3 0.1 2630. 41.8 0.3 2414. 10.2 2372. 0.0 6.2 0.3 0.0 PER Q= 2007. 2114. PER Q= 99.6 0 AREA= 877.4 6 VEL= 6.9 0 DEPTH= 8.6 0 STA=

SECNO	DEPTH	CWSEL	CRIWS	WSELK	EG	HV	HL	OLOSS	L-BANK ELET
0	QLOB	QCH	QROB	ALOB	ACH	AROB	VOL	TWA	R-BANK ELE
TIME	VLOB	VCH	VROB	XNL	XNCH	XNR	WTN	ELMIN	SSTA
SLOPE	XLOBL	XLCH	XLOBR	ITRIAL	IDC	ICONT	CORAR	TOPWID	ENDST

FLOW DISTRIBUTION FOR SECNO= 4.82 CWSEL= 26.70

STA=	571.	900.	950.	1103.	1166.	1236.	1550. 1777.
PER Q=	3.1	1.7	62.4	3.4	4.5	23.4	1.1
AREA=	356.9	132.7	1453.5	208.3	283.1	8 1320.4	156.3
VEL=	0.5	0.8	2.6	1.0) 1.	1 1.1	0.4
DEPTH=	1.1	2.7	9.5	3.3	4.	1 4.3	0.7

FLOW DISTRIBUTION FOR SECNO= 4.90 CWSEL= 27.03

STA= 3	1716.	1900.	1933.	1953.	1973.	2000.	2023.	2067.	2100.	2200.	2300. 23	70. 2441.
PER Q=	7.	9 3.4	4.5	4.3	3.	8 4.3	31.5	4.	.0 12.	9 13.1	9.0	0.8
AREA=	473.	0 152.5	149.4	145.4	151.	8 153.	452.3	140	.9 442.	1 447.1	309.5	59.0
VEL-	1.	0 1.4	1.9	1.8	1.	5 1.	4.3	3 1.	.7 1.	8 1.8	1.8	0.8
DEPTH=	2.	6 4.6	5 7.5	7.3	5.	6 6.	10.3	3 4	.3 4.	4 4.5	4.4	0.8
DEPTH=	2.	6 4.6	7.5	7.3	5.	6 6.	10.1	4	3 4.	4 4.5	4.4	0.8

FLOW DISTRIBUTION FOR SECNO: 5.55 CWSEL= 38.69

STA=	1343		1610		1650.		1670	*	1700	÷	1	720.		1735.		176	0.	1850.		19	40.	2020.		2070.
PER Q		3.3	5	8.4		6.1	0	11.	3	7	.5		4.	5	4.3	2	3.	7	3.	4	7.	3	40.	3
AREA		140.1		167.6	1	03.1	8	178.	2	118	. 8	2	7.	8	92.	2	207.0	0 15	97.	0	295.	1 4	157.	3
VEL		1.4	1	3.1		3.1	5	3.	9	3	.9		3.	5	2.	8	1.	1	1.	1	1.	5	5.	4
DEPTH		0.5	5	4.2	6	5.3	2	5.	9	5	.9		5.	2	3.	7	2.	3	2.	2	3.	7	9.	3

FLOW DISTRIBUTION FOR SECNO# 5.90 CWSEL# 42.20

STA=	1538.	1540.	. 1570.	1572.	1940.	199	5. 2065.
PER Q		0.1	5.9	0.1	0.0	3.8	90.2
AREA		3.6	95.9	3.6	1.1	93.4	576.5
VEL		0.9	2.1	0.9	0.6	1.4	5.3
DEPTH		1.6	3.2	1.6	0.0	1.7	8.8

FLOW DISTRIBUTION FOR SECNO= 5.93 CWSEL= 42.61

STA=	1467.	1469.	1492.	1495	5. 1939.
PER (24	0.1	7.3	0.1	92.5
AREA	4	4.4	94.9	4.4	607.3
VEL	- B	1.0	2.6	1.0	5.1
DEPTH	{=	2.1	4.1	2.1	7.4
AREA VEL)= (=	4.4 1.0 2.1	94.9 2.6 4.1	4.4 1.0 2.1	607.3 5.1 7.4

Run Date: 18NOV97 Run Time: 13:50:57 HMVersion: 6.52 Data File: SCAPC875.DAT SECNO DEPTH CWSEL CRIWS WSELK EG HV. HL OLOSS L-BANK ELEV R-BANK ELEV QLO8 QCH. QROB. ALOB ACH AROB VOL TWA 0 TIME VLOB VCH VROB XNL WTN ELMIN SSTA XNCH XNR TOPWID SLOPE XLOBL. XLCH XLOBR ITRIAL IDC ICONT CORAR ENDST CWSEL-FLOW DISTRIBUTION FOR SECNO-5.95 42.95 STA= 1689. 1779. PER Q* 100.0 AREA= 707.1 VEL= 4.8 DEPTH 8.2 FLOW DISTRIBUTION FOR SECNO= 5.99 CWSEL= 43.86 STA= 1708. 1720. 1730. 1850. 1950. 2010. 2050. 2075. 2081. PER Q= 0.0 0.1 1.8 17.3 AREA= 11.5 28.6 522.6 435.5 72.8 5.3 2.6 0.1 688.8 154.2 8.7 83.9 0.1 1.3 4.4 4.4 VEL-3.6 0.1 1.1 0.0 1.2 0.6 DEPTH= 0.9 2.9 11.5 3.9 3.4 1.4 FLOW DISTRIBUTION FOR SECNO-6.12 CWSEL-44.52 STA= 2001. 2059. PER Q= 100.0 AREA= 591.5 VELW 5.7 DEPTH= 10.2 FLOW DISTRIBUTION FOR SECNO-6.14 CWSEL= 45.20 STA= 2011. 2093. PER Q= 100.0 AREA= 789.1 VEL-4.3 DEPTH= 9.6 FLOW DISTRIBUTION FOR SECNO# 6.32 46.05 CWSEL= STA= 1751. 1983. 2051. 2450. 2491. PER Q# 1.9 93.8 4.2 0.1 AREA= 96.7 491.6 188.4 9.2 VEL= 0.7 6.4 0.8 0.4 DEPTH= 0.4 13.7 0.5 0.2

	e: 18NOV	97 Run	Time: 13	:50:57	HMVers	ion: 6.52	Data	File: S	CAPC875.DAT	
SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIN QROI VROI XLOI	NS N B J B J BR J	WSELK ALOB KNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR ICONT	HL VOL WTN CORAR	OLOSS TWA ELMIN TOPWID	L-BANK ELEV R-BANK ELEV SSTA ENDST
FLOW DISTR	IBUTION F	OR SECNO-	6.7	7	CWSEL	- 48.3	34			
STA. 15	66 15	80 162	10 17	0.0	1800	1900	2003	2049		
PER On	0.0	2 2	2.4	11.3	13.9	18.5	51.8			
AREA	2.3	120.8	82.3	339.2	384.2	462.6	516.5			
VPt.w	0.2	0.6	1.0	1 1	1 2	1 3	3.4			
DEPTH=	0.2	1.3	2.7	3.4	3.8	4.5	11.2			
FLOW DISTR	IBUTION P	OR SECNO-	7.4	5	CWSEL	= 53.0	03			
STA= 17	74. 20	00. 206	3. 21		2551.					
PER Q=	3.9	90.2	4.4	1.5						
AREA=	159.3	597.3	101.0	58.2						
VEL-	0.8	5.1	1.5	0.9						
DEPTH=	0.7	9.5	2.7	0.1						
FLOW DISTR	IBUTION F	OR SECNO=	8.7	7	CWSEL	= 61.1	19			
STA= 20	02. 20	32. 213	2. 22		2212.	2232. 2	2282.			
PER Q=	96.4	0.2	2.3	0.5	0.3	0.3				
AREA=	309.2	8.9	47.9	9.7	9.1	12.7				
VELw	9.7	0.7	1.5	1.6	1.1	0.8				
DEPTH	10.3	0.1	0.7	0.8	0.5	0.3				
FLOW DISTR	IBUTION P	OR SECNO.	9.7	3	CWSEL	. 78.0	90			
STA= 18	09. 19	13. 198	36. 200		2042.					
PER Q=	4.0	5.3	0.7	90.0						
AREA=	101.7	112.9	18.1	330.4						
VEL=	1.2	1.4	1.2	8.1						
DEPTH=	1.0	1.5	1.3	7.9						
FLOW DISTR	IBUTION F	OR SECNO-	9.8	6	CWSEL	- 81.4	18			
STA= 18	22. 19	00. 200	0. 20	59. 3	2100.	2130. 2	2190.			
PER Q=	1.8	8.4	78.8	7.3	2.5	1.3				
ADPA -	55.8	158.2	341.9	101.7	47.4	41.6				
nnen "	0.9	1.6	6.9	2.1	1.6	0.9				
VEL-		3 6	5.8	2.5	1.6	0.7				

the last instance with this of the instance of the second state of the

L-BANK ELEV R-BANK ELEV SSTA ENDST I TRACE 2 CININ TOPWIN TOPWIN Data File: SCAPC875.DAT CHUNIM 73SM 21.5 2067. 1.8 68.3 9.7 HL VOL WTN CORAR TEW 2031. 2046. 0 232.9 510.4 510.4 3.0 HV AROB XNR ICONT SNIVH ALLDC 1994. 1961 Run Time: 13:50:57 HMVersion: 6.52 85.84 87.17 88.50 65.4 5.0 31.2 SCAPPOOSE CREEK MILE 4.11 TO 10.01 CORPS OF ENGINEERS , FLOOD FLAIN MANAGEMENT SERVICES SCAPPOOSE CREEK 500-YEAR FLOOD PROFILE METRIC ACH XNCH IDC 1900. 1982 č, CWSEL* CWSEL= CWSEL* 20.9 545.0 1.1 5.1 60.9 WSELK ALOB XNL ITRIAL STRT XSECH 1843. 1882. .00010 133.5 2.7 54.5 2040. 1800. 1852. CRIWS OROB VROB XLOBR XSECV 9.97 10.00 IDIR 9.99 146.3 0.000 3.2 3.7 2037. 1745. 1802. PRFVS CWSEL OCH VCH XLCH FLOW DISTRIBUTION FOR SECNO. FLOW DISTRIBUTION FOR SECNO= NNIN FLOW DISTRIBUTION FOR SECNO= 7 280.5 2.7 2.7 316.2 118.5 4. 1995. 4. 1995. 129.6 0.7 0.4 STAm 1466. 1663. 5 PER Q= 6.3 55 AREAm 175.0 118 DEFTH= 0.9 1 1700. Run Date: 18NOV97 PER Qa 6.7 AREAa 558.6 VELa 0.3 DEPTHa 1.7 INQ TPLOT DEPTH OLOB VLOBL XLOBL ŝ 1375. STA= 1682. JI ICHECK SECTION CO SLOPE PER Qu J2 NPROF AREA= VEL. *HLd30 15 STA= 222

 IHLEQ = 1. THEREFORE FRICTION LOSS (HL) IS CALCULATED AS A FUNCTION OF

 PROFILE TYPE, WHICH CAN VARY FROM REACH TO REACH. SEE DOCUMENTATION FOR

 DETAILS.

 FLOW DISTRIBUTION FOR SECNO#

 4.65
 CWSEL#

 25.42

 STA#
 1990.

 2124.
 2414.
 2630.

 90.
 2124.
 2414.

 1.7

53.5 253.1 178.5 AREA* 1006.0 284.4 7.2 VEL-1.7 0.8 1.1 1.5 DEPTH= 7.6 0.6 1.4 1.2 0.5

FLOW DISTRIBUTION FOR SECNO= 4.67 CWSEL= 26.51

STA=	20	005.	2114.		2314.		2372.		2414.	2630	. 305	0. 31	30. 3250.
PER	Q=	69.	3	0.	7	2	. 6	2.1	10.	5	13.5	0.9	0.2
ARE	= A3	968.	6	49.	9	99	.4	78.3	391.	9	594.1	61.2	31.7
VE	Lu.	5.	9	1.	2	2	.1	2.3	2.	2	1.9	1.3	0.6
DEPT	"H=	8.	9	0.	2	1	.7	1.9	1.	8	1.4	0.8	0.3

FLOW DISTRIBUTION FOR SECNO= 4.82 CWSEL= 27.79

STA=	419.	800.	900.	950.	1103.	1158.	1236.	1550. 1922.
PER Q=	3.1	3.2	2.2	54.2	3.2	5.9	24.9	3.3
AREA =	490.4	306.7	187.1	1619.8	234.9	401.9	1661.8	482.4
VEL=	0.5	0.9	1.0	2.8	1.1	1.2	1.2	0.6
DEPTH=	1.3	3.1	3.7	10.6	4.3	5.2	5.3	1.3

FLOW DISTRIBUTION FOR SECNO# 4.90 CWSEL# 28.10

STA=	1404.		1900.		1933.		1953		197	3.		2000.		2023		14	2067.	2	100.	2200.	23	00.	2370	2502.
PER Q=		9.5		3.5		4.	2	4.	.0	1	3.8	1	4.	1	27	.7	4	.3	13.6	6 13	. 8	9.	5	1.8
AREA	7	15.8	3 1	88.0	1	71.	0	167.	0	180	0.8	1	18.	2	499	.5	176.	.5	549.8	8 554	.8	384.	9 1	170.3
VEL=		1.1		1.5	1	2.	0	2	0	1	1.7	1	1.	9	4	. 6	2	0	2.0	0 2	.1	2.	0	0.9
DEPTH-		1.4	1	5.7		8.	5	8.	.3		5.7	1	7.	7	11	.4	5	.3	5.5	5 5	.5	5.	5	1.3

FLOW DISTRIBUTION FOR SECNO= 5.55 CWSEL= 39.78

STA=	1094.	1	570.	1610.	1	650.	1670.	1700		1720.		1735.	17	160.	1830.	19	00.	2020.	2070.
PER Q=		3.1	3.1	8 8	.8	5.9	10	. 6	7.	1	4.4	4.	6	3.7	4	.0	10.1	33.	.9
AREA=	43	8.1	141.3	2 211	.2	125.6	210	.9	140.	6	94.2	119.	5	229.6	239	. 6	513.6	5 511.	.5
VEL-		0.6	2.	3 3	.4	3.9	4	.2	4.	2	3.5	3.	2	1.3	1	.4	1.0	5 5.	.5
DEPTH=		0.9	3.	5 5	.3	6.3	7	.0	7.	0	6.3	4.	8	3.3	3	.4	4.3	10.	.3

Run Time: 13:50:57 HMVersion: 6.52 Data File: SCAPC875.DAT Run Date: 18NOV97

L-BANK ELEV R-BANK ELEV SSTA ENDST OLOSS TWA ELMIN TOPWID HL VOL WTN CORAR NV AROB XNR ICONT EG ACH XXXCH WSELK ALOB XNL ITRIAL CRIMS QROB VROB XLOBR CWSEL QCH VCH XLCH DEPTH QLOB VLOB XLOBL SECNO 0 5LOPE SLOPE

43.21 CWSEL# 5.90 FLOW DISTRIBUTION FOR SECNO=

2065. 85.5 644.6 9.5 1995. 149.4 1940. 0.1 2.9 0.0 1573. 0.2 6.2 2.1 1540. 0.2 6.2 1.1 2.1 STA=. 1537. PER Q= AREA= BPTH# VEL.

43.70

CWSELs

1939. 90.9 v 00 1495. 5.93 2.07 1492. FLOW DISTRIBUTION FOR SECNO= 120.1 3.2 5.2 0.2 7.0 1.2 2.6 STA= 1467. PER Q= AREA= VEL= DEPTH=

44.29 CWSEL. 5.95 FLOW DISTRIBUTION FOR SECNO=

1685. 1779. 0. 100.0 A. 830.6 L. 5.4 8.9 PER Q= AREA= VEL-"H1430 44.98 2083. CWSEL= 16.8 0.3 2075. 1.5 111.5 2050. 5.99 199.0 1.4 5.0 2010. FLOW DISTRIBUTION FOR SECNO= 67.4 756.1 4.0 12.6 STA= 1226. 1950. PER Q= 22.4 57. ARAA= 1562.8 756. VEL= 0.6 756. DEPTH= 2.2 12

2001 45.93 1965. CWSEL * 1933. 1897 6.12 1832. FLOW DISTRIBUTION FOR SECNO=

2059. 93.7 673.6 48.2 74.0 46.1 46.1 1765. 20.7 0.3 0.2 PER Q= AREA= 2 VEL= 2 =HT930

18NOV9	7 Run	Time: 13	50:57	HMVersio	n: 6.52	Data P	ile: SC	APC875.DAT	
DEPTH QLOB VLOB	CWSEL QCH VCH	QROI VROI	(S W: 3 A1 3 X1	SELK E LOB A VL X	ig .Ch NCH	HV AROB XNR	HL VOL WTN	OLOSS TWA ELMIN	L-BANK ELEV R-BANK ELEV SSTA
XLOBL	XLCH	XLOI	BR I	TRIAL I	DC	ICONT	CORAR	TOPWID	ENDST
UTION FO	R SECNO-	6.1		CWSEL=	46.75				
. 162	0. 176	5. 18:	12. 1	900. 19	33. 19	90. 2	011. 2	093.	
0.1	2.9	2.4	1.4	0.1	0.9	0.9	91.3		
16.9	181.2	117.2	85.0	16.5	59.8	42.0	916.3		
0.3	0.7	0.9	0.7	0.4	0.6	1.0	4.4		
0.4	1.2	1.7	1.2	0.5	1.0	2.0	11.2		
UTION FO	R SECNO=	6.33	2	CWSEL=	47.45				
. 180	0. 187	1. 190	57. 20	015. 20	51. 22	00. 2	269. 2	350. 245	50. 2568.
3.4	4.1	5.3	1.2	63.8	4.3	3.5	5.4	6.1	2.8
154.9	138.2	182.4	54.7	542.0	194.6	130.5	178.2	210.0	136.7
1.0	1.3	1.3	1.0	5.2	1.0	1.2	1.3	1.3	0.9
1.1	1.9	1.9	1.1	15.1	1.3	1.9	2.2	2.1	1.2
UTION PO	R SECNO	6.7	,	CWSEL=	49.08				
. 167	0. 180	0. 190	0. 20	003. 20	49. 21	00. 2	445.		
3.6	14.7	14.2	18.3	44.2	3.3	1.6			
210.3	517.2	457.9	538.5	550.4	133.7	203.7			
0.8	1.3	1.4	1.5	3.6	1.1	0.4			
1.6	4.0	4.6	5.2	12.0	2.6	0.6			
UTION FO	R SECNO=	7.4	5	CWSEL=	54.19				
. 190	0. 199	0. 200	0. 20	063. 21	00. 21	69. 2	670.		
4.2	5.0	1.9	78.4	5.7	3.7	1.2			
215.1	188.8	45.0	670.9	144.2	138.6	261.2			
0.9	1.2	1.9	5.2	1.8	1.2	0.2			
1.1	2.1	4.5	10.6	3.9	2.0	0.5			
UTION FO	R SECNO#	8.77	,	CWSEL=	62.29	e.			
. 203	2. 207	6. 210	0. 21	32. 22	00. 22	12. 2	232. 2	282. 230	0. 2307.
81.1	0.1	1.0	2.3	8.0	1.5	1.8	3.6	0.4	0.0
342.0	5.2	22.7	43.1	122.2	22.8	30.9	67.4	12.6	0.7
9.8	0.8	1.8	2.2	2.7	2.8	2.4	2.2	1.4	0.4
3.0			1.2	5.0	1 0		3 3	0.2	A 1
11.4	0.1	0.9	1.3	*-0	4.7	1.5	4.3	0.7	0.1
11.4	0.1	0.9	1.3	1.0	1.9	1.5	1.3	0.7	0.1
	DEPTH QLOB VLOB XLOBL UTION FO . 162 0.1 16.9 0.3 0.4 UTION FO . 180 3.4 154.9 1.0 1.1 WITION FO . 167 210.3 0.8 1.6 UTION FO . 190 4.2 215.1 0.9 1.1 UTION FO . 203 81.1	DEPTH CWSEL QLOB QCH VLOB VCH XLOBL XLCH UTION FOR SECNO= 0. 1620. 176 0.1 2.9 16.9 181.2 0.3 0.7 0.4 1.2 UTION FOR SECNO= 1. 1800. 187 3.4 4.1 154.9 138.2 1.0 1.3 1.1 1.9 UTION FOR SECNO= 1. 1670. 180 3.6 14.7 210.3 517.2 0.8 1.3 1.6 4.0 UTION FOR SECNO= 1.1 0.1 1900. 199 4.2 5.0 215.1 188.8 0.9 1.2 1.1 2.1 UTION FOR SECNO= 2. 2032. 207 81.1 0.1	DEPTH CWSEL CRIM QLOB QCH QROI VLOB VCH VROI XLOBL XLCH XLOB WUTION FOR SECNO= 6.14 0.1 2.9 2.4 16.9 181.2 117.2 0.3 0.7 0.9 0.4 1.2 1.7 RUTION FOR SECNO= 6.32 1.12 1.7 RUTION FOR SECNO= 6.32 1800. 1871. 138.2 182.4 1.0 1.3 1.3 1.4 1.3 1.3 1.1 1.9 1.9 RUTION FOR SECNO= 6.77 VITION FOR SECNO= 6.77 1.670. 1800. 190 3.6 14.7 14.2 180.1 0.8 1.3 1.4 1.6 1.6 4.0 4.6 1.9 VITION FOR SECNO= 7.45 1.9	DEPTH CWSEL CRIWS M3 QLOB QCH QROB AI VLOB VCH VROB XI XLOBL XLCH XLOBR 17 MUTION FOR SECNO= 6.14 0.1 2.9 2.4 1.4 16.9 181.2 117.2 85.0 0.3 0.7 0.9 0.7 0.4 1.2 1.7 1.2 MUTION FOR SECNO= 6.32 6.32 . 1800. 1871. 1967. 24 . 1800. 1871. 1967. 24 . 1800. 1871. 1967. 24 . 1800. 1871. 1967. 24 . 1800. 1900. 24 7 . 1670. 1800. 1900. 26 . 18.1 1.4 1.5 1.6 . 1670. 1800. 1900. 26	DEPTH CWSEL CRIWS WSELK E QLOB QCH QROB ALOB A VLOB VCH VROB XNL X XLOBL XLCH XLOBR ITRIAL I MUTION FOR SECNO= 6.14 CWSEL* 0.1 2.9 2.4 1.4 0.1 0.1 2.9 2.4 1.4 0.1 1900. 19 0.1 2.9 2.4 1.4 0.1 16.5 0.3 0.7 0.9 0.7 0.4 0.4 1.2 1.7 1.2 0.5 MUTION FOR SECNO= 6.32 CWSEL* 20 .1600. 1871. 1967. 2015. 20 .3.4 4.1 5.3 1.2 63.8 154.9 138.2 182.4 54.7 542.0 1.0 1.3 1.3 1.0 5.2 1.1 1.9 1.9 1.1 15.1	DEPTH CWSEL CRIWS WSELK EG QLOB QCH QROB ALOB ACH YLOB YCH YROB XNL XNCH XLOBL XLCH XLOBR ITRIAL IDC MUTION FOR SECNO= 6.14 CWSEL= 46.75 0.1 2.9 2.4 1.4 0.1 0.9 0.1 2.9 2.4 1.4 0.1 0.9 0.1 2.9 2.4 1.4 0.1 0.9 0.1 2.9 2.4 1.4 0.1 0.9 0.1 2.9 2.4 1.4 0.1 0.9 0.1 2.9 2.4 1.4 0.1 0.9 0.3 0.7 0.9 0.7 0.4 0.6 0.4 1.2 1.7 1.2 0.5 1.0 MUTION FOR SECNO= 6.32 CWSEL= 47.45 1.4 1.5 1.6 1.4.7 14.2	DEPTH CWSEL CRIWS WSELK EG HV QLOB QCH QROB ALOB ACH AROB XLOB VCH VROB XNL XNCH XNR XLOBL XLCH XLOBR ITRIAL IDC ICONT UUTION FOR SECNO= 6.14 CWSEL* 46.75 0.1 2.9 2.4 1.4 0.1 0.9 0.9 16.9 181.2 117.2 85.0 16.5 59.8 42.0 0.3 0.7 0.9 0.7 0.4 0.6 1.0 2.0 UUTION FOR SECNO* 6.32 CWSEL* 47.45 4.1 5.3 1.2 63.8 4.3 3.5 154.9 138.2 182.4 54.7 542.0 194.6 130.5 1.0 1.3 1.3 1.0 5.2 1.0 1.2 1.1 1.9 1.9 1.1 15.1 1.3 1.5 1.400 </td <td>DEPTH CWSEL CRIWS WSELK EG HV HL QLOB QCH QROB ALOB ACH AROB VOL XLOB VCH VROB XNL XNCH XNCH XNR WIN XLOBL XLCH XLOBR ITRIAL IDC ICONT CORAR NUTION FOR SECNO= 6.14 CWSEL= 46.75 .</td> <td>DEPTH QLOB VLOB VLOB VLOB CRIWS QCH VCH VCH XLOBL CRIWS VCH XLOBR WSELK ALOB XNL XNL XNCH XNCH XNCH XNCH XNCH XNCH XNCH XNCH</td>	DEPTH CWSEL CRIWS WSELK EG HV HL QLOB QCH QROB ALOB ACH AROB VOL XLOB VCH VROB XNL XNCH XNCH XNR WIN XLOBL XLCH XLOBR ITRIAL IDC ICONT CORAR NUTION FOR SECNO= 6.14 CWSEL= 46.75 .	DEPTH QLOB VLOB VLOB VLOB CRIWS QCH VCH VCH XLOBL CRIWS VCH XLOBR WSELK ALOB XNL XNL XNCH XNCH XNCH XNCH XNCH XNCH XNCH XNCH

Run Time: 13:50:57 HMVersion: 6.52 Data File: SCAPC875.DAT Run Date: 18NOV97

L-BANK ELEV R-BANK ELEV SSTA ENDST OLOSS TWA ELMIN TOPWID HL VOL WTN CORAR HV AROB XNR ICONT EC ACH XNCH IDC WSELK ALOB XNL ITRIAL CR1WS QR0B VR0B XL0BR CWSEL OCH VCH XLCH DEPTH QLOB VLOBL XLOBL SECNO Q SLOPE

77.87 CWSEL* 9.73 FLOW DISTRIBUTION FOR SECNO=

2042. 92.0 321.1 11.3 7.6 2000. 15.0 1.1 1986. 96.7 1.3 1913. 3.1 80.7 1.5 0.9 STA= 1826. PER Q= AREA= 8 VEL= »HT930

82.58 CWSEL 9.86 FLOW DISTRIBUTION FOR SECNO=

2238. 8.01 134. 2130. 86.53 2100. CWSEL* 8.4 146.8 3.6 3.6 2059. 666.1 606.6 6.4 2000. 26.6 12.7 267.9 2.7 1900. FLOW DISTRIBUTION FOR SECNO. 139.0 1.5 1.5 1824. 0.1 0.7 0.7 STA= 1816. PER Q= 0 AREA= 5 VEL= 0 DEPTH= 0

2045. 0.50 2037. 87.7 345.1 7.0 8.2 1995. 135.2 1900. PER Q= 4.4 AREA= 238.0 VEL= 0.5 DEPTH= 0.8 STA= 1588.

87.90 CWSEL 9.99 FLOW DISTRIBUTION FOR SECNO=

2031. 53.9 235.0 8.7 235. 2000. 90.1 2.2 0.9 1900. 102. 1843 86.0 3.5 2.0 1800. 115.5 1745. 99.0 99.0 1700. 79.6 1663. STA# 1189. 1600. PER Q# 6.2 5.4 AREA# 215.2 132.3 VEL# 1.1 1.6 VODMUL# 1.0 2.1

2068. 74.3 2046. . of 1994. 89 1982 \$72.8 \$1.4 \$.7 1882. 141.8 1852. 160.2 1802. 308.9 1700. FLOW DISTRIBUTION FOR SECNO= 302.8 3.5 3.5 352.0 352.0 1.3 STA= 1333. PER Q= AREA= 35 VEL= DEPTH=

88.78

CWSEL-

10.00

Page 33

THIS RUN EXECUTED 18NOV97 13:51:00

HEC-2 WATER SURFACE PROFILES

Version 4.6.2; May 1991

NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST

SCAPPOOSE CREEK 10-YEAR

SUMMARY PRINTOUT

RENO CHINS Q QLOB CON MOD VCM VCM </th <th></th>															
	SEC	210	CWSEL	CRIWS	0	0108	OCH	QROB	VLOB	NCH	VROB	AREA	10.KS	NN	
$ \begin{array}{{ccccccccccccccccccccccccccccccccccc$	4	.110	18.10	0.00	3470.00	1346.50	1042.80	1080.69	0.52	1.50	0.48	5550.47	1.00	0.01	
1110 19.96 0.00 5120.00 2554.11 1145.65 2229.04 0.056 1.75 0.61 5320.23 110 19.16 0.00 5170.00 5581.14 1155.56 2219.00 0.75 0.55	4	110	19.35	0.00	5270.00	2165.20	1244.69	1860.11	0.61	1.60	0.57	7586.48	0.99	0.01	
110 20.39 0.00 8100.00 3528.14 1552.86 3219.00 0.74 1.76 0.65 10289.16 110 19.11 0.00 3470.00 1328.21 1053.12 0.54 1.75 0.53 3208.16 110 19.16 0.00 5270.00 213.155 1385.31 1391.20 0.54 1.75 0.53 3208.16 110 211.00 0.00 5170.00 2131.55 1385.31 1391.20 0.54 1.75 0.53 3208.16 110 21.00 0.00 3470.00 1348.53 1391.20 0.54 1.79 0.51 955.55 480 22.67 0.00 3470.00 1466.79 0.00 2.735 0.51 1352.24 480 22.66 0.00 3470.00 1466.79 0.00 2.735 0.50 1552.25 480 22.64 0.00 2470.00 1466.79 0.00 2.75 0.50 1552.25 450	4	110	19.80	0.00	6120.00	2545.31	1345.65	2229.04	0.66	1.67	0.61	8320.21	1.02	0.01	
11018.11 0.00 3470.001378.231088.461053.32 0.54 1.53 0.56 1.53 0.53 5240.97 11019.810.005270.002111.951385.911385.911385.911385.911385.911385.911385.911385.911385.911385.911385.911385.911385.911385.9190.6617.950.0759050.6548019.660.005470.001466.752100.911466.790.002.110.091485.9548022.670.003470.001465.750.002.114.930.001485.9548022.670.003470.001465.750.002.114.930.001485.7548022.1450.003470.000.002460.753552.662.720.001893.2648022.1460.003470.000.002465.750.002.730.001893.2648022.1460.003470.000.002465.750.002.7450.00246.7548022.1460.003470.000.00246.740.00246.740.00246.7648022.1460.003470.000.00246.740.00246.760.00246.7648022.1470.003470.000.00244.740.00244.760.00244.7648022.1460.003470.000.00244.740.00244	4	110	20.99	00.00	8300.00	3528.14	1552.86	3219.00	0.74	1.76	0.69	10289.87	1.00	0.02	
110 17.3 0.00 2270.00 2131.05 1382.20 0.64 1.68 0.59 2333.16 110 21.00 0.00 5120.00 2131.06 1385.91 21010 0.66 1.75 0.61 2950.85 480 21.00 0.00 5120.00 2131.06 1385.91 21010 0.75 1385.91 200.85 480 20.97 0.00 5120.00 2146.73 3159.48 0.00 1495.75 0.00 1395.21 480 22.46 0.00 5120.00 2146.73 355.75 0.00 1895.45 1395.91 480 22.46 0.00 5120.00 2146.73 0.00 2189.45 1101.74 0.00 1895.45 550 22.18 0.00 3170.00 0.00 3170.00 0.00 3189.45 550 22.18 0.00 3170.00 0.00 3170.00 0.00 3189.47 550 22.18 0.00 3146.77 0.00 <td>4</td> <td>130</td> <td>18.11</td> <td>0.00</td> <td>3470.00</td> <td>1328.23</td> <td>1088.46</td> <td>1053.32</td> <td>0.54</td> <td>1.59</td> <td>0.50</td> <td>5240.97</td> <td>1.16</td> <td>0.02</td> <td></td>	4	130	18.11	0.00	3470.00	1328.23	1088.46	1053.32	0.54	1.59	0.50	5240.97	1.16	0.02	
110 11.8 0.00 6120.00 2531.06 1385.93 2201.01 0.06 1.75 0.61 9008.86 480 19.66 0.00 3470.00 1518.86 1391.90 0.76 1.73 0.61 9976.62 480 19.66 0.00 3470.00 1518.86 1389.24 3191.90 0.71 9976.52 480 21.46 0.00 3470.00 1146.25 3121.75 0.00 1.79 4.28 0.00 1899.24 480 21.46 0.00 3470.00 1146.79 0.00 2.71 4.28 0.00 1899.26 480 21.46 0.00 3470.00 0.470.00 2.71 4.46.79 0.00 2.75 0.00 2169.14 650 22.46 0.00 3470.00 0.470.00 2147.04 0.00 244.77 0.71 1.19 244.77 650 22.46 0.00 3470.00 0.00 244.74 0.00 2722 1.717	4	130	19.36	00.0	5270.00	2151.89	1285.91	1832.20	0.64	1.68	0.59	7275.16	1.11	0.02	
110 21.00 0.00 8100.00 3518.86 1589.24 3191.90 0.76 1.83 0.71 976.62 480 19.66 0.00 3470.00 1446.25 3121.75 0.000 1.79 4.28 0.00 1893.28 480 21.97 0.00 3470.00 1446.25 3169.48 0.000 2.732 0.00 1893.28 480 21.97 0.00 3470.00 14470.00 2554.25 3169.48 0.000 1893.28 480 22.06 0.00 3470.00 2570.00 2570.00 2575.20 0.00 3183.28 550 22.06 0.00 3470.00 0.00 2702.00 2758.26 1041.74 0.00 2169.56 550 22.06 0.00 3470.00 0.00 2758.26 1041.74 0.00 264.73 2752 550 22.467 0.00 3470.00 0.00 2738.26 1041.74 0.00 274.746 274.746 274.746	4	130	19.81	0.00	6120.00	2533.06	1385.93	2201.01	0.68	1.75	0.63	8008.86	1.14	0.02	
480 19.66 0.00 3470.00 1148.25 3121.75 0.00 2.31 4.28 0.00 189.28 480 21.67 0.00 5270.00 2100.51 3159.48 0.00 1593.5 480 22.67 0.00 5120.00 2354.25 3159.48 0.00 1593.5 650 22.67 0.00 5120.00 2370.00 0.00 2470.00 0.00 2593.4 650 22.02 0.00 3470.00 0.00 3470.00 0.00 2732 0.00 2693.5 650 23.440 0.00 3470.00 0.00 2470.00 0.00 2732 0.00 2693.5 650 23.440 0.00 3470.00 0.00 2401.7 0.00 2693.5 650 23.440 0.00 2446.79 0.00 2647 0.00 26477 660 23.40 0.00 2446.79 0.00 264.77 264.77 264.77 660	4	130	21.00	0.00	8300.00	3518.86	1589.24	3191.90	0.76	1.83	0.71	9976.62	1.10	0.02	
480 20.97 0.00 5370.00 2106.51 3169.48 0.000 2354.25 3169.48 0.000 2354.25 3557.95 0.000 2532.67 0.000 1555.91 680 221.67 0.00 8120.00 3554.25 3555.75 0.000 2169.56 0.00 2169.56 650 221.06 0.00 3470.00 0.00 3470.00 0.00 3757.66 2169.56 650 221.08 0.00 3470.00 0.00 5470.00 0.00 3871.86 650 221.42 0.00 3470.00 0.00 5470.00 0.00 3871.86 650 221.42 0.00 3470.00 0.00 3470.00 0.00 7721 1.135 1775.46 660 221.38 0.00 3470.00 0.00 7471 0.00 7471 0.00 7471 775 1.135 1775.46 660 221.45 0.00 3470.00 0.00 7471 0.00 7417<	4	480	19.66	0.00	3470.00	1148.25	2321.75	0.00	1.79	4.28	0.00	1183.28	20.47	0.21	
480 21.46 0.00 6120.00 2564.25 3555.75 0.00 2.72 0.00 2103.14 650 22.06 0.00 3470.00 3833.21 4466.79 0.00 2.75 5.75 0.00 21631.14 650 22.06 0.00 3470.00 0.00 2470.00 0.00 576.75 0.00 21631.46 650 22.40 0.00 3470.00 0.00 2470.00 0.00 576.75 0.00 21631.46 650 22.42 0.00 3470.00 0.00 2470.00 0.00 762 0.00 762 660 22.40 0.00 3470.00 0.00 2470.00 0.00 762 1.33 173 660 22.10 0.00 3470.00 0.00 747 0.00 747 1.19 1684.71 660 22.10 0.00 3470.00 0.00 747 0.00 743 1.19 1644.71 1.19 164.77 <	4	480	20.97	0.00	5270.00	2100.51	3169.48	0.00	2.31	4.93	0.00	1552.91	22.25	0.26	
480 22.67 0.00 8300.00 3331.21 4466.79 0.00 2.75 0.00 2169.14 650 22.06 0.00 3470.00 0.00 3470.00 0.00 592 0.00 585.88 650 23.02 0.00 3470.00 0.00 5470.00 0.00 592 0.00 585.88 650 23.440 0.00 3470.00 0.00 5470.00 0.00 5702 0.00 585.88 660 23.440 0.00 3470.00 0.00 5270.00 0.00 7.02 0.00 765.78 660 23.4.07 0.00 3470.00 0.00 7.02 0.00 747.46 660 23.18 0.00 3470.00 0.00 7.22 1.35 1775.46 660 24.07 0.00 547.00 0.00 7.22 1.35 1775.46 660 24.07 0.00 3470.00 0.00 7.22 1.35 164.71	4	480	21.46	0.00	6120.00	2564.25	3555.75	0.00	2.52	5.22	0.00	1699.56	23.27	0.29	
650 22.06 0.00 3470.00 0.00 5470.00 0.00 5470.00 0.00 5470.00 756.75 650 23.42 0.00 5270.00 0.00 5270.00 0.00 756.75 650 23.420 0.00 5270.00 0.00 5270.00 0.00 756.75 650 23.440 0.00 3100.00 0.00 7258.26 1041.74 0.00 7.02 0.00 796.75 660 23.13 0.00 3470.00 0.00 7.02 0.00 702 1.795 1775.46 660 24.07 0.00 5470.00 0.00 7.02 0.00 544.77 660 22.18 0.00 3470.00 0.00 7.17 1.19 1684.71 660 24.67 0.00 547.36 0.00 7.77 1.19 1684.71 660 24.67 0.00 6.61 0.00 7.77 1.19 1684.71 670 22.	4	480	22.67	00.00	8300.00	3833.21	4466.79	0.00	2.75	5.75	0.00	2169.14	24.15	0.33	
650 23.82 0.00 5270.00 0.00 5270.00 0.00 5270.00 0.00 546.75 650 25.42 0.00 8100.00 0.00 7.22 1.35 1775.46 650 25.42 0.00 8100.00 0.00 7.25 1.35 1775.46 660 22.18 0.00 3470.00 0.00 7.25 1.35 1775.46 660 22.18 0.00 3470.00 0.00 5270.00 0.00 644.71 1.35 1775.46 660 22.16 0.00 3470.00 0.00 7.25 0.00 624.77 660 25.65 0.00 1475.62 864.38 0.00 7.77 1.19 1684.71 660 25.65 0.00 0.00 7.77 1.19 1684.71 660 25.65 0.00 0.00 7.77 1.19 1684.71 660 25.65 0.00 0.00 0.00 0.00 1.19	4	.650	22.06	0.00	3470.00	0.00	3470.00	0.00	0.00	5.92	0.00	585,88	43.37	0.54	
650 24.40 0.00 6120.00 0.00 5120.00 0.00 5120.00 0.00 7.02 0.00 871.86 660 25.42 0.00 3470.00 0.00 7.22 1.35 1775.46 660 24.07 0.00 3470.00 0.00 5270.00 0.00 54.77 660 24.07 0.00 3470.00 0.00 5270.00 0.00 54.77 660 24.07 0.00 3470.00 0.00 54.79 0.00 54.77 660 24.07 0.00 3470.00 0.00 7.77 1.19 168.71 760 25.65 22.10 8300.00 0.00 7.47 0.00 64.39 660 24.67 0.00 3470.00 0.00 7.47 1.19 168.71 670 25.65 20.10 0.00 64.38 0.00 6.00 6.63 0.00 64.24 670 22.55 0.00 3470.00	4	650	23.82	0.00	5270.00	0.00	5270.00	0.00	0.00	6.61	00.00	796.75	57.25	0.68	
650 25.42 0.00 8100.00 0.00 728.26 1041.74 0.00 7.22 1.35 1775.46 660 22.18 0.00 3470.00 0.00 3470.00 0.00 555 0.00 54.77 660 24.07 0.00 3470.00 0.00 3470.00 0.00 54.77 660 24.07 0.00 3470.00 0.00 5120.00 0.00 54.77 660 24.07 0.00 5120.00 0.00 5120.00 0.00 54.97 670 25.65 22.10 8100.00 0.00 3470.00 0.00 54.18 0.00 54.97 670 25.65 0.00 3470.00 0.00 54.18 0.00 642.12 670 24.26 0.00 3470.00 0.00 54.19 0.190 642.12 670 24.26 0.00 54.19 0.00 54.19 0.190 54.12 670 24.16 0.00 </td <td>4</td> <td>650</td> <td>24.40</td> <td>0.00</td> <td>6120.00</td> <td>0.00</td> <td>6120.00</td> <td>0.00</td> <td>0.00</td> <td>7.02</td> <td>0.00</td> <td>871.86</td> <td>58.69</td> <td>0.77</td> <td></td>	4	650	24.40	0.00	6120.00	0.00	6120.00	0.00	0.00	7.02	0.00	871.86	58.69	0.77	
660 22.38 0.00 3470.00 0.00 3470.00 0.00 54.77 0.00 5.55 0.00 524.77 660 24.07 0.00 5270.00 0.00 5270.00 0.00 54.87 0.00 54.63 0.00 794.89 660 24.67 0.00 5270.00 0.00 5430.00 0.00 794.89 660 24.67 0.00 5120.00 0.00 7435.62 864.38 0.00 7.77 1.119 1684.71 670 23.45 0.00 3470.00 0.00 7435.62 864.38 0.00 7.77 1.119 1684.71 670 23.45 0.00 3470.00 0.00 7.77 1.119 1684.71 670 23.45 0.00 54.43 0.00 54.94 0.00 54.43 670 24.45 0.00 54.43 0.00 54.44 0.39 543.45 670 24.51 0.00 54.64 0	4	650	25.42	00.00	8300.00	0.00	7258.26	1041.74	0.00	7.22	1.35	1775.46	52.94	0.71	
660 24.07 0.00 5270.00 0.00 5270.00 0.00 54.89 0.00 794.89 660 24.47 0.00 5120.00 0.00 5120.00 0.00 773 1.19 1684.71 660 24.47 0.00 5120.00 0.00 7.77 1.19 1684.71 670 25.65 22.10 8300.00 0.00 7435.62 864.38 0.00 7.77 1.19 1684.71 670 22.55 0.00 3470.00 0.00 544.38 0.00 642.12 670 24.56 0.00 544.38 0.00 54.49 0.00 670 24.56 0.00 574.40 0.00 643.16 0.00 670 24.56 0.00 574.40 0.00 574.40 0.39 670 24.56 0.00 547.40 0.00 5.94 1.95 2755.16 670 24.41 0.00 544.40 0.00 5.94	4	660	22.38	0.00	3470.00	0.00	3470.00	0.00	0.00	5.55	0.00	624.77	43.50	0.48	
660 24.67 0.00 6120.00 642.12 1.19 1684.71 670 24.89 20.00 5544 0.00 5544 0.395 945.46 670 24.89 20.00 0.00 5544 0.39 945.46 670 22.75 0.00 5547.40 0.00 5.54 0.39 945.46 680 22.13 <t< td=""><td>4</td><td>660</td><td>24.07</td><td>0.00</td><td>5270.00</td><td>0.00</td><td>5270.00</td><td>0.00</td><td>0.00</td><td>6.63</td><td>0.00</td><td>794.89</td><td>46.81</td><td>0.68</td><td></td></t<>	4	660	24.07	0.00	5270.00	0.00	5270.00	0.00	0.00	6.63	0.00	794.89	46.81	0.68	
660 25.65 22.10 8300.00 0.00 7435.62 864.38 0.00 7.77 1.19 1684.71 670 22.55 0.00 3470.00 0.00 3470.00 6.00 5.40 0.00 642.12 670 22.55 0.00 3470.00 0.00 3470.00 6.00 813.94 670 22.55 0.00 3470.00 0.00 3470.00 0.00 642.12 670 24.89 20.24 6120.00 0.00 5275.00 600 5.94 0.39 945.46 670 24.89 20.24 6120.00 0.00 5792.60 2547.40 0.00 6.94 0.39 945.46 680 22.75 0.00 3470.00 0.00 3470.00 0.00 6.94 0.39 945.46 680 22.75 0.00 3470.00 0.00 3470.00 0.00 6.94 1.95 267.46 680 22.47 0.00 0.00	4	660	24.67	0.00	6120.00	0.00	6120.00	0.00	0.00	7.16	0.00	854.97	50.21	0.80	
670 22.55 0.00 3470.00 0.00 3470.00 0.00 54.0 0.00 642.12 670 24.26 0.00 5270.00 0.00 5270.00 0.00 642.12 670 24.56 0.00 5270.00 0.00 5270.00 0.00 642.12 670 24.59 20.24 6120.00 0.00 5731.0 0.00 643.4 0.39 943.46 670 26.51 0.00 5792.60 2547.40 0.00 6.34 1.95 2275.16 680 22.77 0.00 3470.00 0.00 5.94 1.95 2275.16 680 22.77 0.00 3470.00 0.00 5.94 1.95 2275.16 680 22.13 0.00 5.94 1.95 2757.16 680 22.13 0.00 5.94 1.95 2757.16 680 22.13 0.00 5.94 1.95 2756.95 680 25.13	*	660	25.65	22.10	\$300.00	0.00	7435.62	864.38	0.00	1.77	1.19	1684.71	55.99	0.84	
670 24.26 0.00 5270.00 0.00 5270.00 0.00 51.94 670 24.89 20.24 6120.00 0.00 594 0.39 945.46 670 24.89 20.04 6120.00 0.00 6994 0.39 945.46 670 24.48 0.00 5.94 0.39 945.46 680 25.75 0.00 5.94 1.95 2275.16 680 22.75 0.00 5.94 1.95 2275.16 680 22.13 0.00 5.94 1.95 2275.16 680 22.13 0.00 5.94 1.95 2275.16 680 22.13 0.00 5.70 0.00 631.76 680 24.13 0.00 5.70 0.00 635.60 680 25.13 0.00 6.00 7.00 0.32 944.31 680 26.68 0.00 6.13 1.33 2506.95 5.13 <td>4</td> <td>670</td> <td>22.55</td> <td>0.00</td> <td>3470.00</td> <td>0.00</td> <td>3470.00</td> <td>0.00</td> <td>0.00</td> <td>5.40</td> <td>0.00</td> <td>642.12</td> <td>39.87</td> <td>0.45</td> <td></td>	4	670	22.55	0.00	3470.00	0.00	3470.00	0.00	0.00	5.40	0.00	642.12	39.87	0.45	
670 24.89 20.24 6120.00 0.00 6031.31 26.69 0.00 6.94 0.19 945.46 670 26.51 0.00 8100.00 0.00 5752.60 2547.40 0.00 5.94 1.95 2275.16 680 22.75 0.00 3470.00 0.00 3470.00 631.76 680 22.75 0.00 5700.00 0.00 5247.40 0.00 631.76 680 22.75 0.00 5270.00 0.00 5246.07 0.00 631.76 680 25.13 20.52 6120.00 0.00 6366.07 23.93 0.00 7.00 0.32 944.31 680 25.13 20.52 6120.00 0.00 6345.93 1954.07 0.00 6.13 1.33 2506.95	4	670	24.26	0.00	5270.00	0.00	5270.00	0.00	0.00	6.47	0.00	813.94	43.45	0.65	
670 26.51 0.00 8300.00 0.00 572.60 2547.40 0.00 5.94 1.95 2275.16 680 22.75 0.00 3470.00 0.00 3470.00 631.76 680 22.75 0.00 3470.00 0.00 526.00 631.76 680 23.13 20.52 6120.00 0.00 606.07 23.93 0.00 631.76 680 25.13 20.52 6120.00 0.00 6345.93 1954.07 0.00 6.13 1.33 2506.95 680 25.68 0.00 6345.93 1954.07 0.00 6.13 1.33 2506.95		670	24.89	20.24	6120.00	0.00	6093.31	26.69	0.00	6.94	0.39	945.46	45.88	0.75	
680 22.75 0.00 3470.00 0.00 3470.00 6.00 5.49 0.00 631.76 680 24.48 0.00 5270.00 0.00 5270.00 0.00 631.76 680 24.48 0.00 5270.00 0.00 626.07 23.93 0.00 635.60 680 25.13 20.52 6120.00 0.00 6096.07 23.93 0.00 7.00 0.32 944.31 680 25.68 0.00 6345.93 1954.07 0.00 6.13 1.33 2506.95	4	670	26.51	0.00	8300.00	0.00	5752.60	2547.40	0.00	5.94	1.95	2275.16	68.50	0.40	
680 24.48 0.00 5270.00 0.00 5270.00 0.00 6.54 0.00 805.60 680 25.13 20.52 6120.00 0.00 6096.07 23.93 0.00 7.00 0.32 944.31 680 25.13 20.52 6120.00 0.00 6096.07 23.93 0.00 7.00 0.32 944.31 680 26.68 0.00 6345.93 1954.07 0.00 6.13 1.33 2506.95	4	680	22.75	0.00	3470.00	0.00	3470.00	0.00	0.00	5.49	0.00	631.76	41.99	0.47	
680 25.13 20.52 6120.00 0.00 6096.07 23.93 0.00 7.00 0.32 944.31 680 26.68 0.00 8300.00 0.00 6345.93 1954.07 0.00 6.13 1.33 2506.95	4	680	24.48	0.00	5270.00	0.00	5270.00	0.00	0.00	6.54	0.00	805,60	44.88	0.66	
680 26.68 0.00 8300.00 0.00 6345.93 1954.07 0.00 6.13 1.33 2506.95	4	680	25.13	20.52	6120.00	00.00	6096.07	23.93	0.00	7.00	0.32	944.31	47.52	0.76	
	*	680	26.68	0.00	8300.00	0.00	6345.93	1954.07	0.00	6.13	1.33	2506.95	32.09	0.45	

	Run Date:	18N0V97	Run Time:	13:50:57	HMVers	ion: 6.52	Data Fil	e: SCAPC	875.DAT			Page 34	
	SECNO	CWSEL	CRIWS	Q	QLOB	QCH	QROB	VLOB	VCH	VROB	AREA	10*KS	HV
	4.820	24.30	0.00	3470.00	5.91	2887.50	576.58	0.25	2.66	0.76	1870.75	7.96	0.09
٠	4.820	26.02	0.00	5270.00	148.55	3578.75	1542.70	0.56	2.65	1.00	3163.66	5.94	0.08
	4.820	26.70	0.00	6120.00	297.28	3817.52	2005.20	0.61	2.63	1.02	3911.96	5.27	0.07
•	4.820	27.79	0.00	8300.00	713.22	4495.49	3091.29	0.72	2.78	1.11	5385.12	5.09	0.07
	4.900	24.77	0.00	3470.00	856.81	1668.88	944.31	1.41	4.73	1.42	1623.89	23.84	0.18
٠	4.900	26.39	0.00	5270.00	1444.79	1855.29	1969.93	1.39	4.37	1.68	2633.14	15.96	0.13
٠	4.900	27.03	0.00	6120.00	1728.89	1955.22	2435.89	1.41	4.32	1.74	3076.22	14.32	0.12
•	4.900	28.10	0.00	8300.00	2438.98	2295.06	3565.95	1.52	4.59	1.94	3936.51	14.16	0.13
	4.940	25.23	0.00	3470.00	995.54	1960.90	513.56	1.66	5.58	0.79	1602.49	33.41	0.29
	4.940	26.72	0.00	5270.00	1773.54	2359.18	1137.28	1.79	5.66	1.02	2526.72	27.31	0.24
	4.940	27.33	0.00	6120.00	2158.63	2532.46	1428.91	1.85	5.71	1.08	2937.86	25.60	0.23
	4.940	28.40	0.00	8300.00	3129.95	3043.36	2126.69	2.08	6.20	1.22	3746.35	26.42	0.25
	4.970	25.49	0.00	3470.00	92.15	3377.85	0.00	2.45	9.28	0.00	401.59	103.15	1.30
٠	4.970	26.97	26.97	5270.00	648.49	4621.51	0.00	1.57	10.51	0.00	852.59	108.05	1.51
٠	4.970	27.46	27.46	6120.00	1134.22	4985.78	0.00	1.86	10.72	0.00	1073.51	105.98	1.46
•	4.970	28.64	28.64	8300,00	2794.07	5505.93	0.00	2.14	10.43	0.00	1834.07	88.06	1.14
•	5.000	27.33	0.00	3470.00	1217.20	2252.80	0.00	1.11	3.60	0.00	1724.90	20.43	0.14
•	5.000	29.00	0.00	5270.00	2538.99	2731.01	0.00	1.30	3.56	0.00	2725.19	15.99	0.11
•	5.000	29.44	0.00	6120.00	3112.63	3007.37	0.00	1.38	3.73	0.00	3055.19	16.75	0.12
•	5.000	30.26	0.00	8300.00	4605.42	3694.58	0.00	1,60	4.21	0.00	3753.44	19.62	0.14
	5.210	29.66	0.00	3470.00	127.51	2737.01	605.48	0.92	4.12	2.19	1078.09	23.67	0.22
	5.210	30.98	0.00	5270.00	662.29	3686.72	920.98	0.90	4.57	2.53	1903.97	22.46	0.25
	5.210	31.44	0.00	6120.00	1022.82	4051.93	1045.25	0.93	4.73	2.64	2353.98	22.23	0.25
	5.210	32.40	0,00	8300.00	2065.93	4898.02	1336.05	1.04	5.11	2.90	3411.96	22.22	0.26
•	5.320	31.45	0.00	3470.00	0.00	3470.00	0.00	0.00	8.81	0.00	394.06	76.63	1.20
٠	5.320	32.71	31.44	5270.00	21.59	5248.41	0.00	0.66	10.73	0.00	521.74	99.43	1,78
•	5.320	33.13	32.34	6120.00	133.46	5986.54	0.00	1.36	11.48	0.00	619.33	105.82	2.00
1	5.320	34.78	34.78	8300.00	1336.65	6963.35	0.00	2.09	10.60	0.00	1296.91	69.67	1.47
	5.380	34.13	0.00	3470.00	0.14	3469.85	0.00	0.22	6.96	0.00	499.22	55.79	0.75
•	5.380	36.00	0.00	5270.00	197.15	5072.85	0.00	1.46	7.09	0.00	850.40	45.15	0.75
•	5.380	36.59	0.00	6120.00	435.44	5684.56	0.00	1.41	7.22	0.00	1096.55	41.54	0,75
	5.380	37.31	0.00	8300.00	1122.97	7177.03	0.00	1.71	8.20	0.00	1533.20	47.10	0.91
•	5.430	35.25	0.00	3470.00	21.67	3404.04	44.29	0.71	5.21	1.46	714.66	16.62	0.41
•	5.430	36.94	0.00	5270.00	256.38	4933.24	80.38	1.27	6.00	1.69	1071.58	16.31	0.53
•	5.430	37.47	0.00	6120.00	416.39	5606.57	97.04	1.45	6.42	1.80	1213.50	17.19	0.59
•	5.430	38.26	0.00	8300.00	872.29	7290.24	137.47	1.86	7.65	2.15	1484.59	21.77	0.81
	5.550	36.36	0.00	3470.00	1373.24	2096.76	0.00	2.57	6.10	0.00	878.26	17.91	0.39
	5.550	38.09	0.00	5270.00	2940.97	2329.03	0.00	2.32	5.44	0.00	1695.04	11.13	0.25
	5.550	38.69	0.00	6120.00	3655.27	2464.73	0.00	2.32	5.39	0.00	2035.01	10.15	0.23
•	5.550	39.78	0.00	8300.00	5483.39	2816.61	0.00	2.23	5.51	0.00	2975.73	9.38	0.21

	Due Dava.	CONVERS &	Due elen	12.60.67	and the second s	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		100000					
	CALL PACK	1620404	- American		e 10.000	96.0 1001	10112 E110	-	100.010			rage	
	SECNO	CMSEL	CRIMS	0	QLOB	бСН	QROB	VLOB	VCH	VROB	AREA	10.KS	ИИ
	5.630	37.10	0.00	1930.00	13.96	1899.24	16.80	0.77	5.83	0.47	379.51	21.69	0.52
	5.630	38.52	0.00	2900.00	128.62	2483.32	288.06	1.24	6.04	1.07	783.68	17.08	0.49
	5.630	39.07	0.00	3360.00	229.84	2688.08	442.08	1.30	6.06	1.23	980.24	15.52	0.46
	5.630	40.13	0.00	4450.00	567.13	3092.56	15.061	1.41	6,09	1.47	1448.09	13.13	0.41
	5.830	39.12	0.00	1930.00	267 86	1662 14	0 00	0 96	1 21	00.0	22 223	12 51	11.0
	5.830	40.38	0.00	2900.00	726.15	2173.85	0.00	1.30	5.42	00.00	958.65	14.76	12.0
	5.830	40.83	0.00	3360.00	965.07	2394.93	0.00	1.44	5.67	0.00	1093.39	15.42	0.36
	5.830	41.79	0.00	4450.00	1622.35	2827.65	00.00	1.78	6.02	0.00	1380.45	17.54	0.38
	5.860	39.43	0.00	1930.00	35.23	1894 77	0 00	16 0	1.4.4	0 00	265 27	19 58	01.0
	5.860	40.67	0.00	2900.00	130.24	2769.52	0.24	1.67	5.42	0.43	589.10	25.84	0.44
	5.860	41.12	0.00	3360.00	182.20	3176.81	1.00	1.96	5.85	0.64	637.19	28.64	0.51
	5.860	42.06	00.00	4450.00	321.82	4122.46	5.72	2.46	6.73	1.07	748.26	34.19	0.66
	5.890	39.84	0.00	1930.00	241.11	1688.88	0.00	1 94	6 22	0 00	395.50	62 33	0 53
	5.890	41.14	0.00	2900.00	604.40	2295.00	0.60	2.52	6 70	0 75	582.61	48.19	0.53
	5.890	41.62	0.00	3360.00	784.36	2574.10	1.54	2.74	6.97	0.94	656.84	47.19	0.61
	5.890	42.63	00.00	4450.00	1230.51	3213.94	5.55	3.17	7.57	1.28	816.54	46.15	0.63
	5.900	40.49	0.00	1930.00	47.38	1882.62	0.00	1.02	4.02	0.00	514.82	18.45	0.25
	5.900	41.71	0.00	2900.00	217.84	2682.15	0.00	1.42	4.92	00.00	699.08	24.05	0.35
	5.900	42.20	0.00	3360.00	330.61	3029.39	0.00	1.67	5.25	0.00	774.05	26.08	0.39
	5.900	43.21	00.00	4450.00	646.28	3803.72	00.00	2.22	5.90	0.00	935.75	29.76	0.47
	5.920	40.69	0.00	1930.00	76.64	1853.36	0.00	1.44	4.04	0.00	\$12.39	22.38	0.24
	5.920	41.97	0.00	2900.00	186.80	2713.20	0.00	2.17	0.00	0.00	641.77	28.40	0.35
	5.920	42.47	0.00	3360.00	245.07	3114.93	0.00	2.46	5.23	00.00	695.36	30.92	0 40
	5.920	43.52	0.00	4450.00	394.54	4055.46	0.00	3.06	5.93	00.00	813.17	35.88	0.51
	8 976	30 78	00 0	1920 00	21 15	1040 05	00 0	1 16	1 07	00 0	00 003	20.06	
	\$ 925	42 00	0000	00 0060	31 261	18 3066	0000	31.0	01. 1	00.0	00.333	20 20	12.0
	\$ 925	19 07	00.0	3360.00	C8 C3C	2107 18	00.00	22.6	C1 3	00.0	30.010	21.00	ar 0
	5.925	43.70	0.00	4450.00	404.99	4045.01	0.00	3.02	5.78	0.00	833.49	33.60	0.48
	5.935	40.97	0.00	1930.00	0.00	1930.00	0.00	0.00	3.54	0.00	545.95	14.69	0.19
	5.935	42.30	0.00	2900.00	0.00	2900.00	0.00	0.00	4.45	0.00	651.77	20.35	0.31
	5.935	42.82	0.00	3360.00	0.00	3360.00	0.00	0.00	4.83	0.00	696.33	22.78	0.36
	5.935	43.92	0.00	4450.00	0.00	4450.00	0.00	0.00	5.59	0.00	795.86	28.93	0.49
	5.950	40.99	0.00	1930.00	0.00	1930.00	0.00	0.00	3.53	0.00	547.52	14.57	0.19
	5.950	42.33	0.00	2900.00	0.00	2900.00	0.00	0.00	4.43	0.00	655.21	20.06	0.30
	5.950	42.95	0.00	3360.00	00.00	3360.00	0.00	0.00	4.75	0.00	707.08	21.85	0.35
	5.950	44.29	0.00	4450.00	0.00	4450.00	0.00	0.00	5.36	0.00	830.58	25.35	0.45
-	5.960	41.29	0.00	1930.00	0.00	1930.00	0.00	0.00	3.38	00.00	\$70.84	12.99	0.18
	2.960	42.73	0.00	2900.00	0.00	2900.00	0.00	0.00	4.21	0.00	688.84	17.48	0.28
	5.960	43.45	0.00	3360.00	00.00	3360.00	0.00	0.00	4.47	0.00	752.27	19.64	0.31
	202.0	10.99	20.00	00.0CFF	~~~~	00.0055	0.00	0.00	05.0	0.00	937.64	00.92	0.49

Run Date:	18NOV97	Run Time:	13:50:57	HMVers	ion: 6.52	Data File	SCAPCE	TAG. 271			Page 36	
SECNO	CWSEL	CRIMS	o	0108	0CH	QROB	801V	VCH	VROB	AREA	10*KS	NN.
5.990	41.50	0.00	1930.00	178.30	1701.84	49.86	0.40	3.11	0.58	1078.45	8.48	0.13
5.990	43.09	0.00	2900.00	475.97	2236.29	187.74	0.58	3.48	0.97	1649.83	8.57	0.15
5.990	43.86	0.00	3360.00	641.61	2446.29	272.11	0.64	3.55	1.10	1933.79	8.15	0.15
5.990	44.98	0.00	4450.00	998.75	3001.31	449.94	0.64	3.97	1.37	2646.66	8.99	0.17
6.020	41.68	0.00	1930.00	3.21	1711.06	215.73	0.64	4.12	0.86	672.47	17.73	0.23
6.020	43.27	0.00	2900.00	19.30	2087.06	793.63	1.00	4.18	1.29	1133.91	14.31	0.20
6.020	44.03	00.00	3360.00	33.46	2211.08	1115.46	0.82	4.10	1.41	1372.45	12.41	0 18
6.020	45.17	0.00	4450.00	232.65	2508.66	1708.68	0.62	4.18	1.61	2036.76	11.21	0.17
6.090	42.15	0.00	1930.00	86.18	1528.26	315.56	0.65	1.90	0.81	1327.75	3.24	0.05
6.090	43.68	0.00	2900.00	177.79	2102.68	619.53	0.87	2.20	0.97	1797.34	3.57	0.06
6.090	44.39	0.00	3360.00	225.90	2350.16	783.94	0.95	2.28	1.03	2028.53	3.55	0.06
6.090	45.50	00.00	4450.00	332.34	2963.89	1153.77	1.14	2.60	1.19	2399.95	4.08	0.08
6.110	42.19	0.00	1930.00	88.57	1772.58	68.85	0.42	2.50	0.30	1148.69	5.65	0.09
6.110	43.71	0.00	2900.00	192.97	2517.21	189.83	0.59	3.02	0.35	1698.59	6.62	0.12
6.110	44.43	0.00	3360.00	249.77	2847.73	262.50	0.65	3.19	0.38	1969.49	6.76	0.13
6.110	45.54	00.00	4450.00	376.72	3647.21	426.07	0.80	3.71	0.45	2399.28	8.01	0.18
6.115	42.22	0.00	1930.00	0.00	1930.00	0.00	0.00	4.03	0.00	478.37	15.60	0.25
6.115	43.75	0.00	2900.00	0.00	2900.00	0.00	0.00	5.26	0.00	551.21	23.45	0.43
6.115	44.46	0.00	3360.00	0.00	3360.00	0.00	0.00	5.72	0.00	587.43	31.40	0.51
6.115	45.58	0.00	4450.00	163.01	4286.99	0.00	0.91	6.57	0.00	832.49	36.04	0.65
6.120	42.24	0.00	1930.00	0.00	1930.00	0.00	0.00	4.02	0.00	480.07	15.45	0.25
6.120	43.80	0.00	2900.00	0.00	2900.00	0.00	0.00	5.24	0.00	553.94	23.12	0.43
6.120	44.52	0.00	3360.00	0.00	3360.00	0.00	0.00	5.68	0.00	591.55	30.68	0.50
6.120	45.93	0.00	4450.00	280.74	4169.26	0.00	0.98	6.19	0.00	960.80	30.64	0.56
6.130	42.42	0.00	1930.00	0.00	1930.00	0.00	0.00	3.42	0.00	563.88	13.10	0.18
6.130	44.13	00.00	2900.00	0.00	2900.00	0.00	0.00	4.13	0.00	701.82	16.84	0.27
6.130	44.94	0.00	3360.00	0.00	3360.00	0.00	0.00	4.38	0.00	767.78	17.07	0.30
6.130	46.38	0.00	4450.00	250.99	4199.01	0.00	0.69	4.74	0.00	1250.91	16.67	0.33
6.135	42.44	0.00	1930.00	0.00	1930.00	0.00	0.00	3.42	0.00	565.09	13.05	0.18
6.135	44.16	0.00	2900.00	0.00	2900.00	0.00	0.00	4.12	0.00	703.73	16.70	0.26
6.135	45.20	0.00	3360.00	0.00	3360.00	0.00	0.00	4.26	0.00	789.09	15.64	0.28
6.135	46.75	0.00	4450.00	386.74	4063.26	0.00	0.75	4.43	0.00	1434.85	13.97	0.28
6.150	42.64	0.00	1930.00	0.00	1930.00	0.00	0.00	2.17	0.00	889.84	4.30	0.07
6.150	44.44	0.00	2900.00	0.00	2900.00	0.00	0.00	2.59	0.00	1120.23	5.09	0.10
 6.150	45.50	0.00	3360.00	0.00	3360.00	0.00	0.00	2.67	0.00	1257.37	4.88	0.11
6.150	47.10	0.00	4450.00	936.38	3513.62	0.00	0.32	2.40	0.00	4430.81	3.38	0.01
6.230	42.86	0.00	1930.00	400.50	1529.50	0.00	1.32	2.92	00.00	827.01	6.97	0.11
6.230	44.71	0.00	2900.00	971.86	1914.48	13.66	0.89	3.07	0.19	1782.26	6.43	0.10
6.230	45.77	0.00	3360.00	1480.69	1735.75	143.55	0.76	2.55	0.37	3009.02	3.94	0.06
6.230	47.28	0,00	4450,00	2353.56	1641.64	454.80	0.73	2.15	0.48	4923.75	2.42	0.03

	Run Date:	18NOV97	Kun Time:	13:50:57	HMVers	10n: 6.52	Data Fil	e: SCAPC	875.DAT			Page 37	
	SECNO	CWSEL	CRIWS	Q	QLOB	QCH	QROB	VLOB	VCH	VROB	AREA	10•KS	HV
	6.300	43.31	0.00	1930.00	0.00	1930.00	0.00	0.00	4.68	0.00	412.73	23.43	0.34
٠	6.300	45.14	0.00	2900.00	1.40	2727.32	171.28	0.28	5.37	1.08	670.82	26.82	0.42
٠	6.300	46.06	0.00	3360.00	71.22	2823.57	465.21	0.54	5.06	1.00	1156.23	21.56	0.34
•	6.300	47.44	0.00	4450.00	650.55	2575.61	1223.83	0.86	4.06	1.04	2572.93	11.71	0.15
	6.310	43.41	0.00	1930.00	0.00	1930.00	0.00	0.00	4.87	0.00	396.69	25.49	0.37
	6.310	45.19	0.00	2900.00	0.00	2899.79	0.21	0.00	6.30	0.12	462.17	38.00	0.62
	6.310	46.04	38.82	3360.00	63.06	3153.82	143.12	0.66	6.42	0.73	781.50	37.61	0.60
	6.310	47.45	0.00	4450.00	623.77	2840.06	986.17	1.18	5.24	1.16	1921.84	22.92	0.28
	6.315	43.43	0.00	1930.00	0.00	1930.00	0.00	0.00	4.86	0.00	397.30	25.38	0.37
	6.315	45.34	0.00	2900.00	0.00	2896.51	3.49	0.00	6.21	0.25	480.38	36.64	0.60
	6.315	46.05	0.00	3360.00	64.46	3150.01	145.53	0.67	6.41	0.74	785.84	37.47	0.60
	6.315	47.45	0.00	4450.00	623.94	2839.65	986.41	1.18	5.24	1.16	1922.26	22.91	0.28
	6.320	43.64	0.00	1930.00	0.00	1902.10	27.90	0.00	3.98	0.40	547.52	13.91	0.24
•	6.320	45.91	0.00	2900.00	145.28	2205.50	549.22	0.58	3.76	0.85	1483.93	9.94	0.17
•	6.320	46.66	0.00	3360.00	327.77	2157.13	875.10	0.70	3.46	0.85	2122.83	7.79	0.12
	6.320	47.70	0.00	4450.00	694.03	2258.76	1497.21	0.85	3.36	0.95	3069.32	6.61	0.10
•	6.500	44.34	0.00	1930.00	280.96	1046.84	602.19	0.65	2.11	1.16	1444.96	3.21	0.05
٠	6.500	46.42	0.00	2900.00	681.97	1223.50	994.52	0.76	2.11	0.89	2588.60	2.61	0.04
٠	6.500	47.08	0.00	3360.00	845.45	1283.29	1231.26	0.80	2.12	0.83	3144.47	2.48	0.03
•	6.500	48.08	0.00	4450.00	1193.18	1462.02	1794.79	0.90	2.26	0.87	4030.51	2.60	0.03
•	6.750	45.46	0.00	1930.00	328.31	1586.46	15.23	0.87	4.04	0.81	789.43	16.07	0.21
	6.750	47.16	0.00	2900.00	1115.93	1729.40	54.66	1.14	3.67	0.95	1511.38	10.43	0.13
•	6.750	47.75	0.00	3360.00	1471.40	1809.24	79.36	1.20	3.63	1.01	1800.17	9.47	0.12
•	6.750	48.72	0.00	4450.00	2235.53	2027.81	186.66	1.35	3.73	0.68	2468.85	8.94	0.11
	6.760	45.54	0.00	1930.00	0.00	1930.00	0.00	0.00	4.86	0.00	396.84	23.05	0.37
	6.760	47.21	0.00	2900.00	1150.99	1749.01	0.00	1.15	3.69	0.00	1474.18	10.51	0.14
	6.760	47.80	0.00	3360.00	1518.34	1841.66	0.00	1.22	3.68	0.00	1740.11	9.70	0.13
	6.760	48.77	0.00	4450,00	2244.79	2008.90	196.31	1.34	3.68	0.67	2513.81	8.65	0.11
	6.770	45.59	0.00	1930.00	0.00	1930.00	0.00	0.00	4.95	0.00	389.82	24.46	0.38
	6.770	47.88	0.00	2900.00	1283.28	1616.72	0.00	1.07	3,26	0.00	1690.31	7.72	0.10
	6.770	48.34	0.00	3360.00	1618.38	1741.61	0.00	1.16	3.37	0.00	1907.80	7.80	0.10
	6.770	49.08	0.00	4450.00	2263.35	1968.44	218.21	1.31	3.58	0.65	2611.64	8.06	0.10
•	6.780	46.00	0.00	1930.00	425.15	1485.28	19.57	0.87	3.63	0.78	924.24	12.34	0.16
	6.780	47.93	0.00	2900.00	1264.60	1567.43	67.97	1.04	3.15	0.88	1788.74	7.16	0.09
	6.780	48.39	0.00	3360.00	1585.84	1682.95	91.21	1.12	3.25	0.93	2027.26	7.19	0.09
	6.780	49.12	0.00	4450.00	2270.01	1953.03	226.96	1.30	3.54	0.64	2649.53	7.84	0.10
	7.020	47.28	0.00	1930.00	212.06	1717.94	0.00	0.73	3.80	0.00	743.86	9.98	0.20
	7.020	48.81	0.00	2900.00	782.74	2075.05	42.20	1.14	4.01	0.37	1316.29	10.01	0.18
	7.020	49.26	0.00	3360.00	1022.52	2200.33	137.16	1.26	4.09	0.52	1614.59	10.12	0.18
	7.020	50.02	0.00	4450.00	1521.11	2458.39	470.50	1.46	4.29	0.74	2248.40	10.61	0.17

Run Date:	1810097	Run Time:	13:50:57	HMVersi	on: 6.52	Data File	SCAPCE	75.DAT			Page 38	
SECNO	CWSEL	CRIMS	ø	01.08	NCH	QROB	VLOB	NCH	VROB	AREA	10.XS	NN
7.430	50.37	0.00	1930.00	12.6	1921 18	11.1	16.0	2 47	0 27	36 625	19 78	11 0
7.430	51.88	0.00	2900.00	31.87	2790.75	77.38	1.17	11.5	1.06	625 25	21.37	67 0
7.430	52.38	0.00	3360.00	59.29	3166.74	111 97	1 04	5 69	80 1	218 48	23 65	CF 0
7.430	53.27	0.00	4450.00	230.63	3918.79	300.57	1.07	6.40	1.56	1020.34	25.23	0.56
	60 A7	00 0	1010 00	~ ~	00 000	000	00 0		~ ~			~ ~
0	10.00	0.0	00.0541	0.0	1730.00	00.0	000	4.4.4	0.00	430.40	16.91	00
1.440	21.98	0.00	2900.00	0.00	2900.00	0.00	0.00	0.40	0.00	531.48	22.17	0.46
7.440	52.53	0.00	3360.00	68.74	3143.37	147.89	0.97	5.56	1.29	751.53	21.15	0.45
1.440	23.40	0.00	00.0005	420.10	3832.23	45.155	1.08	0.13	1.42	1123.70	22.50	0.51
7.450	50.50	0.00	1930.00	0.00	1930.00	0.00	0.00	4.41	0.00	438.13	18.70	0.30
7.450	52.33	0.00	2900.00	50.11	2849.88	0.00	0.96	5.15	0.00	605.17	18.74	0.41
7.450	53.03	0.00	3360.00	129.52	3031.14	199.34	0.81	5.07	1 26	915 69	16.42	0 36
7.450	54.19	0.00	4450.00	489.55	3488.39	472.06	1.09	5.20	0.87	1663.78	14.76	0.33
7 460	50 61	00 0	1910 00	00.0	1920 00	0 00	00 0	2. 26	00 0	444 06	17 88	0 00
7 460	CS CS	00.0	00 0000	K8 61	CC 7160	126.42	10.0	00.4		16 0x6	16 24	
7 460	52 13	0000	00 0922	146 86	2002 10	30.000	10.0	00.4	100	055 25	16.60	32.0
7.460	54.29	0.00	4450.00	514.30	3442.29	493.41	1.09	5.09	0.82	1748.72	13.97	0.31
7.870	52.57	0.00	1795.00	10.33	1758.29	26.38	0.25	2.62	0.49	766.83	\$.09	0.10
 7.870	54.46	0.00	2690.00	207.04	2361.51	121.46	0.60	2.97	0.84	1283.73	5.25	0.12
7.870	55.07	0.00	3115.00	356.48	2588.50	170.02	0.71	3.10	0.95	1517.30	5.36	0.13
7.870	56.17	0.00	4125.00	750.20	3088.61	286.19	0.93	3.41	1.14	1960.53	5.82	0.14
8.580	57.02	0.00	1795.00	0.19	1735.62	59.20	0.14	4.45	1.12	444.46	19.19	0.30
8.580	58.64	0.00	2690.00	143.79	2308.62	237.59	0.93	4.96	1.45	784.42	18.89	0.33
8.580	59.18	0.00	3115.00	259.95	2519.66	335.39	1.13	5.14	1.60	928.84	18.93	0.34
8.580	60.22	00.00	4125.00	583.18	2965.43	576.39	1.47	5.51	1.91	1236.16	19.24	0.35
8.750	58.75	0.00	1795.00	26.91	1768.09	0.00	1.24	4.20	0.00	442.76	16.92	0.27
8.750	60.32	0.00	2690.00	55.10	2358.20	276.70	1.47	4.66	1.11	792.22	16.33	0.30
8.750	60.86	0.00	3115.00	70.14	2606.88	437.97	1.58	4.87	1.25	929.85	16.59	0.31
8.750	61.90	00.00	4125.00	115.11	3113.38	896.51	1.67	5.27	1.48	1266.16	16.94	0.33
8.760	59.14	0.00	1795.00	0.00	1795.00	0.00	0.00	7.25	0.00	247.55	71.96	0.82
8.760	60.79	0.00	2690.00	0.00	2667.93	22.07	0.00	8.99	0.86	322.29	95.69	1.24
8.760	61.17	57.75	3115.00	0.00	3012.01	102.99	0.00	9.77	1.26	390.26	109.78	1.43
8.760	62.23	62.09	4125.00	0.00	3388.96	736.03	0.00	6.67	2.37	651.20	106.14	1.28
8.770	59.14	0.00	1795.00	0.00	1795.00	0.00	0.00	7.25	0.00	247.59	71.92	0.82
8.770	60.79	0.00	2690.00	0.00	2667.18	22.82	0.00	8.98	0.87	323.30	95.41	1.24
8.770	61.19	0.00	3115.00	0.00	3001.68	113.32	0.00	9.71	1.28	397.53	108.06	1.41
8.770	62.29	0.00	4125.00	0.00	3346.10	778.89	0.00	9.78	2.38	669.66	101.83	1.22
8.780	60.23	0.00	1795.00	36.24	1585.63	173.13	0.99	3.17	0.74	769.85	7.64	0.14
8.780	62.54	0.00	2690.00	88.85	1906.90	694.26	0.90	3.05	0.93	1470.68	5.25	0.11
8.780	63.20	0.00	3115.00	123.69	2055.74	935.57	0.90	3.11	1.00	1733.73	5.08	0.10
8.780	63.99	0.00	4125.00	199.90	2503.65	1421.45	1.04	3.56	1.22	2064.19	6.12	0.13

Run Date:	18NOV97	Run Time:	13:50:57	HMVers	ion: 6.52	Data File	: SCAPCE	175.DAT			Page 39	
SECHO	CMSEL	CRIWS	•	01/08	QCH	QROB	VLOB	VCH	VROB	AREA	10•KS	NN
8.880	60.70	0.00	1730.00	1.99	1727.53	0.48	0.21	2.94	0.20	600.15	7.92	0.13
8.880	62.87	0.00	2585.00	190.57	2353.12	41.31	0.75	3.15	0.68	1061.86	6.64	0.14
8.880	63.52	0.00	2990.00	302.76	2616.81	70.43	0.88	3.30	0.83	1222.83	6.69	0.15
8.880	64.36	0.00	3960.00	538.20	3290.82	130.98	1.14	3.85	1.11	1445.25	8.25	0.19
9.230	64.53	0.00	1730.00	326.88	1385.33	17.79	1.02	5.26	1.56	595.17	40.60	0.35
9.230	65.50	0.00	2585.00	1035.10	1521.94	27.96	1.39	4.92	1.53	1071.63	28.50	0.23
010 0	66 29	00.0	00 0000	1277 44	1583 79	22 27	1 49	4 82	1 53	1271 31	25 39	10 0
9.230	66.62	0.00	3960.00	2144.81	1770.67	44.52	1.69	4.87	1.58	1658.78	22.63	0.19
9.500	69.63	0.00	1730.00	643.26	800.88	285.86	2.21	4.27	1.20	716.86	36.97	0.16
9.500	70.13	0.00	2585.00	934.10	1071.10	579.80	2.74	5.19	1.61	906.65	47.91	0.22
9.500	70.32	0.00	2990.00	1063.59	1180.27	746.14	2.92	5.49	1.78	999.38	50.80	0.24
9.500	70.91	0.00	3960.00	1349.42	1374.74	1235.84	3.07	5.72	2.06	1278.54	47.71	0.25
9.600	72.68	72.68	1730.00	434.76	1295.24	0.00	1.50	7.26	0.00	468.10	83.56	0.62
9.600	73.30	0.00	2585.00	1035.51	1549.49	0.00	1.88	7.47	0.00	757.82	79.92	0.54
9.600	73.55	0.00	2990.00	1343.61	1646.39	0.00	1.97	7.48	0.02	901.65	76.34	0.50
9.600	73.98	00.00	3960.00	2077.74	1879.37	2.89	2.05	7.78	0.62	1259.04	72.96	0.48
9.620	73.64	0.00	1730.00	634.24	1095.76	0.00	1.32	5.48	0.00	681.82	44.16	0.31
9.620	74 17	0.00	2585.00	1216.10	1368.76	0.15	1.58	6.06	0.25	595.93	48.39	0.32
9.620	74.37	0.00	2990.00	1516.46	1472.32	1.22	1.63	6.23	0.43	1168.93	48.20	0.32
9.620	74.76	0.00	3960.00	2242.70	1709.19	8.11	1.81	6.68	0.69	1504.91	49.98	0.33
9.710	75.87	0.00	1730.00	12.39	1717.61	0.00	0.62	6.33	0.00	291.38	52.98	0.62
9.710	76.78	0.00	2585.00	213.12	2371.82	0.05	1.50	7.68	0.31	451.25	72.72	0.84
9.710	77.04	0.00	2990.00	342.84	2646.50	0.66	1.83	8.28	0.60	507.84	80.52	0.95
9.710	27.59	77.16	3960.00	732.54	3220.37	7.09	2.43	9.39	1.27	649.77	94.36	1.13
9.720	76.14	0.00	1730.00	0.00	1730.00	0.00	0.00	6.50	0.00	266.23	56.69	0.66
9.720	77.15	0.00	2585.00	166.00	2419.00	0.00	1.21	7.87	0.00	445.12	76.63	0.90
9.720	77.44	0.00	2990.00	282.80	2707.20	0.00	1.50	8.46	0.00	508.15	84.02	1.01
9.720	78.06	77.93	3960.00	643.85	3316.15	0.00	1.97	9.58	0.00	672.88	97.21	1.20
9.730	76.19	0.00	1730.00	0.00	1730.00	0.00	0.00	6.86	0.00	252.36	34.95	0.73
9.730	77.21	74.65	2585.00	0.00	2585.00	0.00	0.00	9.52	0.00	271,62	140.36	1.41
9.730	78.09	0.00	2990.00	298.63	2691.37	0.00	1.28	8.15	0.00	563.01	39.51	0.93
9.730	77.87	77.87	3960.00	316.88	3643.12	0.00	1.65	11.34	0.00	\$13.54	79.61	1.84
9.740	76.36	0.00	1730.00	0.00	1730.00	0.00	0.00	7.09	00.00	243.93	38.54	0.78
9.740	78.56	0.00	2585.00	273.61	2309.83	1.56	1.12	6.93	0.48	581.81	28.30	0.67
9.740	78.29	0.00	2990.00	243.98	2745.43	0.58	1.25	8.53	0.43	518.84	44.85	1.04
9.740	78.27	78.15	3960.00	316.13	3643.17	0.69	1.65	11.35	0.56	514.35	79.68	1.84
9.860	79.76	0.00	1730.00	1.72	1688.88	39.41	0.39	7.02	1.25	276.54	73.69	0.75
9.860	80.97	0.00	2585.00	156.87	2209.49	218.64	1.23	7.07	1.67	570.61	52.85	0.67
9.860	81.48	0.00	2990.00	303.05	2356.56	330.39	1.42	6.89	1.73	746.64	44.49	0.59
9.860	82.58	0.00	3960.00	707.40	2618.95	633.65	1.72	6.44	1.75	1180.01	30.81	0.44

Run Date:	18NOV97	Run Time:	13:50:57	HWVerst	on: 6.52	Data Fil	e: SCAPCI	875.DAT			Page 40	
SECNO	CWSEL	CRIWS	ø	QLOB	QCH	QROB	VLOB	VCH	VROB	AREA	10.KS	HV
9.930	82.80	82.44	1730.00	0.00	1644.81	85.19	0.00	8.09	1.30	268.71	111.29	0.97
9.930	83.50	83.43	2585.00	0.00	2231.19	353.81	0.00	9.22	2.11	409.67	122.34	1.15
9.930	83.83	83.83	2990.00	0.00	2453.51	536.49	0.00	9.41	2.39	485.64	118.60	1.14
9.930	84.32	84.32	3960.00	8.47	3009.40	942.13	0.79	10.37	2.88	627.45	127.17	1.30
9.970	84.67	0.00	1600.00	0.21	1599.79	0.00	0.23	5.99	0.00	268.13	49.74	0.56
9.970	85.55	0.00	2000.00	35.48	1964.52	0.00	0.63	6.46	0.01	360.70	50.88	0.64
9.970	85.84	82.11	2210.00	87.76	2122.06	0.18	0.68	6.71	0.39	446.26	52.13	0.67
9.970	86.53	0.00	2750.00	333.90	2412.69	3.41	0.89	6.99	61.0	722.72	50.38	0.67
9.980	85.11	0.00	1600.00	0.00	1600.00	0.00	0.00	7.67	0.00	208.61	44.77	0.91
9.980	86.00	82.82	2000.00	118.14	1881.86	0.00	0.78	8.08	0.00	383.54	44.53	0.95
9.980	86.29	83.22	2210.00	247.88	1962.12	0.00	0.97	8.14	0.00	496.18	43.75	0.91
9.980	86.96	0.00	2750.00	703.57	2046.43	0.00	1.29	7.89	0.00	806.84	38.29	0.73
9.990	85.21	0.00	1660.00	0.00	1660.00	0.00	0.00	8.05	0.00	206.17	19.91	1.01
9.990	86.09	86.03	2480.00	38.18	2441.82	0.00	0.49	10.64	0.00	307.19	180.96	1.73
9.990	87.17	87.17	2870.00	766.54	2103.46	0.00	1.49	9.03	0.00	748.21	175.24	0.94
9.990	87.90	87.90	3800.00	1750.66	2049.34	0.00	1.90	8.72	0.00	1155.39	162.77	0.66
10.000	86.64	0.00	1660.00	487.67	1150.47	21.86	0.65	2.78	0.64	1194.34	4.70	0.09
10.000	88.63	0.00	2480.00	1137.40	1297.79	44.81	0.63	2.51	0.63	2400.96	2.84	0.05
10.000	88.50	0.00	2870.00	1291.28	1527.66	51.07	0.75	2.99	0.75	2307.88	4.11	0.08
10.000	88.78	0.00	3800.00	1778.05	1952.17	69.77	0.93	3.72	0.94	2506.46	6.12	0.12

SCAPPOOSE CREEK 10-YEAR

SUMMARY PRINTOUT

4.110 0.00 3470.00 18.10 18.12 0.00 0.00 4.90 1629.54 83.94 825.00 880.00 1 4.110 0.00 5270.00 19.35 19.16 0.00 0.00 4.90 1649.20 77.83 825.00 890.00 1 4.110 0.00 3470.00 18.11 18.13 10.00 0.00 4.90 1649.20 77.83 825.00 890.00 1 4.130 100.00 3470.00 18.11 18.13 9.37 0.00 0.00 5.10 1649.20 77.81 825.00 890.00 1 4.130 100.00 5270.00 19.36 19.87 0.00 0.00 5.10 1647.79 78.23 825.00 890.00 1 4.480 1850.00 3470.00 19.66 19.87 0.00 0.00 9.60 280.52 1786.16 1990.00 2069.00 2 4.480 1850.00 5270.00 21.62 10.00 0.00 9.60 302.25 1786.21 1990.00 2049.00 2 4.480<		SECNO	XLCH	Q	CWSEL	EG	ELTRD	ELLC	ELMIN	TOPWID	SSTA	STCHL	STCHR	ENDST
4.110 0.00 5270.00 19.35 19.36 0.00 0.00 4.90 1637.96 81.31 825.00 890.00 1 4.110 0.00 6120.00 19.80 19.81 0.00 0.00 4.90 1640.92 80.36 825.00 890.00 1 4.130 100.00 3470.00 18.11 18.13 0.00 0.00 5.10 1628.25 84.34 825.00 890.00 1 4.130 100.00 6120.00 19.36 19.37 0.00 0.00 5.10 1636.67 81.71 825.00 890.00 1 4.130 100.00 6120.00 19.66 19.87 0.00 0.00 5.10 1637.96 81.31 825.00 890.00 1 4.480 1850.00 3470.00 19.66 19.87 0.00 0.00 9.60 280.52 1786.21 1990.00 2069.00 2 4.480 1850.00 3470.00 22.67 23.00 0.00 9.60 382.31 197.26 1990.00 2069.00 2 4.650 </td <td></td> <td>4.110</td> <td>0.00</td> <td>3470.00</td> <td>18.10</td> <td>18.12</td> <td>0.00</td> <td>0.00</td> <td>4.90</td> <td>1629.54</td> <td>83.94</td> <td>825.00</td> <td>890.00</td> <td>1713.48</td>		4.110	0.00	3470.00	18.10	18.12	0.00	0.00	4.90	1629.54	83.94	825.00	890.00	1713.48
4.110 0.00 6120.00 19.80 19.81 0.00 0.00 4.90 1640.98 80.36 825.00 890.00 1 4.130 100.00 3470.00 18.11 18.13 0.00 0.00 5.10 1628.25 84.34 825.00 890.00 1 4.130 100.00 5270.00 19.36 19.37 0.00 0.00 5.10 1638.67 81.71 825.00 890.00 1 4.130 100.00 6120.00 19.81 19.82 0.00 0.00 5.10 1638.67 81.71 825.00 890.00 1 4.130 100.00 6120.00 21.00 21.02 0.00 0.00 5.10 1647.79 78.23 825.00 890.00 1 4.480 1850.00 3470.00 19.66 19.87 0.00 0.00 9.60 280.73 1786.16 1990.00 2069.00 2 4.480 1850.00 6120.00 21.62 22.61 0.00 0.00 9.60 280.73 1780.16 1990.00 2069.00 2 4.6		4.110	0.00	5270.00	19.35	19.36	0.00	0.00	4.90	1637.96	81.31	825.00	890.00	1719.26
4.110 0.00 8300.00 20.59 21.01 0.00 0.00 4.90 1649.20 77.83 825.00 890.00 1 4.130 100.00 3470.00 18.11 18.13 0.00 0.00 5.10 1638.67 81.71 825.00 890.00 1 4.130 100.00 6120.00 19.81 19.82 0.00 0.00 5.10 1639.70 80.76 825.00 890.00 1 4.130 100.00 6120.00 19.66 19.87 0.00 0.00 5.10 1647.79 78.23 825.00 890.00 1 4.480 1850.00 5270.00 20.97 21.23 0.00 0.00 9.60 280.52 1786.16 1990.00 2069.00 2 4.480 1850.00 3470.00 22.66 22.61 0.00 0.00 9.30 88.53 197.26 1990.00 2124.00 2 4.650 850.00 6120.00 24.40 25.17 0.00 0.09		4.110	0.00	6120.00	19.80	19.81	0.00	0.00	4.90	1640.98	80.36	825.00	890.00	1721.34
4.130 100.00 3470.00 18.11 18.13 0.00 0.00 5.10 1628.25 84.34 825.00 890.00 1 4.130 100.00 5270.00 19.36 19.37 0.00 0.00 5.10 1636.67 81.71 825.00 890.00 1 4.130 100.00 6120.00 19.81 19.82 0.00 0.00 5.10 1636.67 81.71 825.00 890.00 1 4.130 100.00 6120.00 21.02 0.00 0.00 5.10 1647.79 78.23 825.00 890.00 1 4.480 1850.00 3470.00 20.97 21.23 0.00 0.00 9.60 280.52 1786.21 1990.00 2069.00 2 4.480 1850.00 6120.00 21.46 21.75 0.00 0.00 9.60 362.25 1746.91 1990.00 2124.00 2 4.650 850.00 5270.00 23.82 24.49 0.00 0.00 9.30 188.53 1997.26 1990.00 2124.00 2		4.110	0.00	8300.00	20.99	21.01	0.00	0.00	4.90	1649.20	77.83	825.00	890.00	1727.03
4.130 100.00 5270.00 19.36 19.37 0.00 0.00 5.10 1636.67 81.71 825.00 890.00 1 4.130 100.00 6330.00 21.00 21.02 0.00 0.00 5.10 1647.79 78.23 825.00 890.00 1 4.480 1850.00 5270.00 20.37 72.123 0.00 0.00 5.60 280.52 1786.21 1990.00 2069.00 2 4.480 1850.00 5270.00 20.37 21.73 0.00 0.00 9.60 380.51 1990.00 2069.00 2 4.480 1850.00 3470.00 22.67 23.00 0.00 0.00 9.60 586.71 1482.29 1990.00 2069.00 2 4.650 850.00 3470.00 22.66 22.61 0.00 0.00 9.30 88.53 1997.66 1990.00 2124.00 2 4.650 850.00 6120.00 24.47 25.47 0.00 0.00 9.30 101.64 2006.76 2000.00 2124.00 2 <		4.130	100.00	3470.00	18.11	18.13	0.00	0.00	5.10	1628.25	84.34	825.00	890.00	1712.59
4.130 100.00 6120.00 19.81 19.82 0.00 0.00 5.10 1639.70 80.76 825.00 890.00 1 4.130 100.00 8300.00 21.00 0.00 0.00 5.10 1647.79 78.23 825.00 890.00 1 4.480 1850.00 3470.00 19.66 19.87 0.00 0.00 9.60 280.52 1786.16 1990.00 2069.00 2 4.480 1850.00 6120.00 21.64 21.75 0.00 0.00 9.60 302.25 1766.09 1990.00 2069.00 2 4.480 1850.00 8300.00 22.67 23.00 0.00 0.00 9.60 302.51 1764.09 1990.00 2124.00 2 4.650 850.00 6120.00 24.40 25.17 0.00 0.00 9.30 187.41 1990.00 2124.00 2 4.650 850.00 6120.00 24.40 25.17 0.00 0.00 9.30 100.48 206.76 200.00 2124.00 2 <td< td=""><td></td><td>4.130</td><td>100.00</td><td>5270.00</td><td>19.36</td><td>19.37</td><td>0.00</td><td>0.00</td><td>5.10</td><td>1636.67</td><td>81.71</td><td>825.00</td><td>890.00</td><td>1718.38</td></td<>		4.130	100.00	5270.00	19.36	19.37	0.00	0.00	5.10	1636.67	81.71	825.00	890.00	1718.38
4.130 100.00 \$300.00 21.00 21.02 0.00 0.00 5.10 1647.79 78.23 825.00 890.00 1 4.480 1850.00 3470.00 19.66 19.87 0.00 0.00 9.60 280.52 1786.21 1990.00 2669.00 2 4.480 1850.00 6120.00 21.62 0.00 0.00 9.60 280.73 1780.16 1990.00 2669.00 2 4.480 1850.00 6120.00 21.64 21.75 0.00 0.00 9.60 586.71 1482.29 1990.00 2069.00 2 4.650 850.00 3470.00 22.66 22.61 0.00 0.00 9.30 182.51 1997.26 1990.00 2124.00 2 4.650 850.00 6120.00 24.40 25.17 0.00 0.00 9.30 101.64 2006.76 2000.00 2124.00 2 4.650 850.00 6300.00 22.42 26.13 0.00 0.00 9.30 100.48 2006.76 2000.00 2124.00 2 4.650 <td></td> <td>4,130</td> <td>100.00</td> <td>6120.00</td> <td>19.81</td> <td>19.82</td> <td>0.00</td> <td>0.00</td> <td>5.10</td> <td>1639.70</td> <td>80.76</td> <td>825.00</td> <td>890.00</td> <td>1720.46</td>		4,130	100.00	6120.00	19.81	19.82	0.00	0.00	5.10	1639.70	80.76	825.00	890.00	1720.46
4.480 1850.00 3470.00 19.66 19.87 0.00 0.00 9.60 280.52 1786.21 1990.00 2069.00 2 4.480 1850.00 5270.00 20.97 21.23 0.00 0.00 9.60 287.73 1780.16 1990.00 2069.00 2 4.480 1850.00 6120.00 21.46 21.75 0.00 0.00 9.60 586.71 1482.29 1990.00 2069.00 2 4.650 850.00 3470.00 22.06 22.61 0.00 0.00 9.30 88.53 1997.26 1990.00 2124.00 2 4.650 850.00 6120.00 24.40 25.17 0.00 0.00 9.30 129.92 1990.00 2124.00 2 4.650 850.00 5270.00 24.47 24.76 0.00 0.00 9.30 100.48 2006.76 2000.00 2124.00 2 4.660 50.00 5270.00 24.67 25.47 0.00 0.00 9.30 100.54 2006.77 2000.00 2114.00 2		4.130	100.00	8300.00	21.00	21.02	0.00	0.00	5.10	1647.79	78.23	825.00	890.00	1726.02
4.480 1850.00 5270.00 20.97 21.23 0.00 0.00 9.60 287.73 1780.16 1990.00 2069.00 2 4.480 1850.00 6100.00 21.46 21.75 0.00 0.00 9.60 586.71 1482.29 1990.00 2069.00 2 4.480 1850.00 8100.00 22.67 23.00 0.00 0.00 9.60 586.71 1482.29 1990.00 2124.00 2 4.650 850.00 5270.00 23.82 24.49 0.00 0.00 9.30 187.41 1990.68 1990.00 2124.00 2 4.650 850.00 6270.00 23.82 24.49 0.00 0.00 9.30 129.92 1990.00 2124.00 2 4.650 850.00 8300.00 25.42 26.13 0.00 0.00 9.30 100.48 2066.76 2000.00 2114.00 2 4.660 50.00 1470.00 22.38 22.86 0.00 0.00 9.30 100.48 2066.76 2000.00 2114.00 2		4.480	1850.00	3470.00	19.66	19.87	0.00	0.00	9.60	280.52	1786.21	1990.00	2069.00	2066.73
4.480 1850.00 6120.00 21.46 21.75 0.00 0.00 9.60 302.25 1766.09 1990.00 2069.00 2 4.480 1850.00 8300.00 22.67 23.00 0.00 0.00 9.60 586.71 1482.29 1990.00 2069.00 2 4.650 850.00 3470.00 22.06 22.61 0.00 0.00 9.30 187.41 1990.00 2124.00 2 4.650 850.00 6120.00 24.40 25.17 0.00 0.00 9.30 107.41 1990.00 1214.00 2 4.650 850.00 6120.00 24.40 25.17 0.00 0.00 9.30 101.60 1990.00 1214.00 2 4.650 850.00 3470.00 22.38 22.86 0.00 0.00 9.30 100.48 2006.76 2000.00 2114.00 2 4.660 50.00 5120.00 24.67 25.47 0.00 0.00 9.30 100.48 2006.75 2000.00 2114.00 2 4.660 <	e	4.480	1850.00	5270.00	20.97	21.23	0.00	0.00	9.60	287.73	1780.16	1990.00	2069.00	2067.89
4.480 1850.00 8300.00 22.67 23.00 0.00 0.00 9.60 586.71 1482.29 1990.00 2069.00 2 4.650 850.00 3470.00 22.06 22.61 0.00 0.00 9.30 88.53 1997.26 1990.00 2124.00 2 4.650 850.00 5270.00 23.82 24.49 0.00 0.00 9.30 187.41 1990.68 1990.00 2124.00 2 4.650 850.00 6300.00 25.42 26.13 0.00 0.00 9.30 101.60 1990.00 2124.00 2 4.660 50.00 3470.00 22.38 22.86 0.00 0.00 9.30 100.48 2006.76 2000.00 2114.00 2 4.660 50.00 3470.00 22.38 22.86 0.00 0.00 9.30 100.48 2006.75 2000.00 2114.00 2 4.660 50.00 3470.00 22.55 23.00 24.70 25.70 9.30 100.49 2006.75 2000.00 2114.00 2		4.480	1850.00	6120.00	21 46	21.75	0.00	0.00	9.60	302.25	1766.09	1990.00	2069.00	2068.34
4.650 850.00 3470.00 22.06 22.61 0.00 0.00 9.30 88.53 1997.26 1990.00 2124.00 2 4.650 850.00 5270.00 23.82 24.49 0.00 0.00 9.30 127.41 1990.06 1990.00 2124.00 2 4.650 850.00 8300.00 25.42 26.13 0.00 0.00 9.30 1011.60 1990.00 1124.00 2 4.660 50.00 3470.00 22.38 22.86 0.00 0.00 9.30 100.48 2006.76 2000.00 2114.00 2 4.660 50.00 5270.00 24.07 24.76 0.00 0.00 9.30 100.48 2006.76 2000.00 2114.00 2 4.660 50.00 8300.00 25.65 26.49 0.00 0.00 9.30 100.48 2006.75 2000.00 2114.00 2 114.00 2 114.00 2 114.00 2 114.00 2 114.00 2 114.00 2 114.00 2 114.00		4.480	1850.00	8300.00	22.67	23.00	0.00	0.00	9.60	586.71	1482.29	1990.00	2069.00	2069.00
4.650 850.00 5270.00 23.82 24.49 0.00 0.00 9.30 127.41 1990.68 1990.00 2124.00 2 4.650 850.00 6120.00 24.40 25.17 0.00 0.00 9.30 129.92 1990.60 1990.00 2124.00 2 4.650 850.00 3470.00 22.42 26.13 0.00 0.00 9.30 100.48 2066.76 2000.00 2114.00 2 4.660 50.00 5270.00 24.07 24.76 0.00 0.00 9.30 100.54 2066.76 2000.00 2114.00 2 4.660 50.00 6120.00 24.67 25.47 0.00 0.00 9.30 100.54 2066.75 2000.00 2114.00 2 4.660 50.00 5270.00 24.67 25.70 9.30 100.49 2066.75 2000.00 2114.00 2 4.670 31.00 6120.00 24.89 26.42 24.70 25.70 9.30 100.49 2066.75 2000.00 2114.00 2		4.650	850.00	3470.00	22.06	22.61	0.00	0.00	9.30	88.53	1997.26	1990.00	2124.00	2085.80
4.650 850.00 6120.00 24.40 25.17 0.00 0.00 9.30 129.92 1990.00 1990.00 2124.00 2 4.650 850.00 6120.00 25.42 26.13 0.00 0.00 9.30 1011.60 1990.00 1990.00 2124.00 2 4.660 50.00 3470.00 22.38 22.86 0.00 0.00 9.30 100.48 2006.76 2000.00 2114.00 2 4.660 50.00 6120.00 24.67 25.47 0.00 0.00 9.30 100.56 2006.70 2000.00 2114.00 2 4.660 50.00 8300.00 25.65 26.49 0.00 0.00 9.30 100.49 2006.70 2000.00 2114.00 3 4.670 31.00 3470.00 22.55 23.00 24.70 25.70 9.30 100.49 2006.72 2000.00 2114.00 2 4.670 31.00 5270.00 24.25 24.7	e -	4.650	850.00	5270.00	23.82	24.49	0.00	0.00	9.30	127.41	1990.68	1990.00	2124.00	2118.09
4.650 850.00 8300.00 25.42 26.13 0.00 0.00 9.30 1011.60 1990.00 1990.00 2124.00 3 4.660 50.00 3470.00 22.38 22.86 0.00 0.00 9.30 100.48 2006.76 2000.00 2114.00 2 4.660 50.00 5270.00 24.07 24.76 0.00 0.00 9.30 100.48 2006.76 2000.00 2114.00 2 4.660 50.00 6120.00 24.67 25.47 0.00 0.00 9.30 100.48 2006.75 2000.00 2114.00 2 4.660 50.00 8300.00 22.55 23.00 24.70 25.70 9.30 100.49 2006.75 2000.00 2114.00 2 4.670 31.00 5470.00 24.26 24.91 24.70 25.70 9.30 100.55 2006.71 2000.00 2114.00 2 4.670 31.00 5470.00 22.75 23.		4.650	850.00	6120.00	24 40	25.17	0.00	0.00	9.30	129.92	1990.00	1990.00	2124.00	2119.92
4.660 50.00 3470.00 22.38 22.86 0.00 0.00 9.30 100.48 2006.76 2000.00 2114.00 2 4.660 50.00 5270.00 24.07 24.76 0.00 0.00 9.30 100.54 2006.73 2000.00 2114.00 2 4.660 50.00 6120.00 24.67 25.47 0.00 0.00 9.30 106.54 2006.73 2000.00 2114.00 2 4.660 50.00 8300.00 22.55 23.00 24.70 25.70 9.30 100.49 2006.75 2000.00 2114.00 2 4.670 31.00 5270.00 24.26 24.91 24.70 25.70 9.30 100.49 2006.75 2000.00 2114.00 2 4.670 31.00 5270.00 24.26 24.91 24.70 25.70 9.30 100.55 2006.71 2000.00 2114.00 2 4.670 31.00 3470.00 22.75 23.22 0.00 0.00 9.60 100.49 2006.76 2000.00 2114.00 <td></td> <td>4.650</td> <td>850.00</td> <td>8300.00</td> <td>25.42</td> <td>26.13</td> <td>0.00</td> <td>0.00</td> <td>9.30</td> <td>1011.60</td> <td>1990.00</td> <td>1990.00</td> <td>2124.00</td> <td>3017.20</td>		4.650	850.00	8300.00	25.42	26.13	0.00	0.00	9.30	1011.60	1990.00	1990.00	2124.00	3017.20
4.660 50.00 5270.00 24.07 24.76 0.00 0.00 9.30 100.54 2006.73 2000.00 2114.00 2 4.660 50.00 6120.00 24.67 25.47 0.00 0.00 9.30 100.56 2006.73 2000.00 2114.00 2 4.660 50.00 8300.00 25.65 26.49 0.00 0.00 9.30 100.56 2006.75 2000.00 2114.00 2 4.670 31.00 3470.00 22.55 23.00 24.70 25.70 9.30 100.49 2006.75 2000.00 2114.00 2 4.670 31.00 5270.00 24.89 25.64 24.70 25.70 9.30 100.49 2006.75 2000.00 2114.00 2 4.670 31.00 6120.00 24.89 25.64 24.70 25.70 9.30 1247.02 2004.82 2000.00 2114.00 2 4.680 50.00 3470.00 22.75 23.22 0.00 0.00 9.60 100.49 2006.76 2000.00 2114.00 </td <td></td> <td>4.660</td> <td>50.00</td> <td>3470.00</td> <td>22.38</td> <td>22.86</td> <td>0.00</td> <td>0.00</td> <td>9.30</td> <td>100.48</td> <td>2006.76</td> <td>2000.00</td> <td>2114.00</td> <td>2107.24</td>		4.660	50.00	3470.00	22.38	22.86	0.00	0.00	9.30	100.48	2006.76	2000.00	2114.00	2107.24
4.660 50.00 6120.00 24.67 25.47 0.00 0.00 9.30 100.56 2006.72 2000.00 2114.00 2 4.660 50.00 8300.00 25.65 26.49 0.00 0.00 9.30 106.58 2006.72 2000.00 2114.00 2 4.670 31.00 3470.00 22.55 23.00 24.70 25.70 9.30 100.49 2006.75 2000.00 2114.00 2 4.670 31.00 5270.00 24.26 24.91 24.70 25.70 9.30 100.55 2006.72 2000.00 2114.00 2 4.670 31.00 6120.00 24.89 25.64 24.70 25.70 9.30 100.55 2006.72 2000.00 2114.00 2 4.670 31.00 8300.00 26.51 26.91 24.70 25.70 9.30 1247.02 2004.82 2000.00 2114.00 2 4.680 50.00 3470.00 22.75 23.22 0.00 0.00 9.60 100.55 2006.76 2000.00 2114.00		4.660	50.00	5270.00	24.07	24.76	0.00	0.00	9.30	100.54	2006.73	2000.00	2114.00	2107.27
4.660 50.00 8300.00 25.65 26.49 0.00 0.00 9.30 1066.98 2006.70 2000.00 2114.00 3 4.670 31.00 3470.00 22.55 23.00 24.70 25.70 9.30 100.49 2006.75 2000.00 2114.00 2 4.670 31.00 5270.00 24.26 24.91 24.70 25.70 9.30 100.55 2006.72 2000.00 2114.00 2 4.670 31.00 6120.00 24.89 25.64 24.70 25.70 9.30 719.36 2006.71 2000.00 2114.00 2 4.670 31.00 8300.00 26.51 26.91 24.70 25.70 9.30 719.36 2006.76 2000.00 2114.00 2 4.680 50.00 3470.00 22.75 23.22 0.00 0.00 9.60 100.49 2006.76 2000.00 2114.00 2 4.680 50.00 6120.00 25.13 25.88 0.00 0.00 9.60 100.49 2006.76 2000.00 2114.00		4.660	50.00	6120.00	24.67	25.47	0.00	0.00	9.30	100.56	2006.72	2000.00	2114.00	2107.28
4.670 31.00 3470.00 22.55 23.00 24.70 25.70 9.30 100.49 2006.75 2000.00 2114.00 2 4.670 31.00 5270.00 24.26 24.91 24.70 25.70 9.30 100.55 2006.72 2000.00 2114.00 2 4.670 31.00 6120.00 24.89 25.64 24.70 25.70 9.30 100.55 2006.71 2000.00 2114.00 2 4.670 31.00 8300.00 26.51 26.91 24.70 25.70 9.30 1247.02 2004.82 2000.00 2114.00 2 4.680 50.00 3470.00 22.75 23.22 0.00 0.00 9.60 100.49 2006.76 2000.00 2114.00 2 4.680 50.00 5270.00 24.48 25.13 25.88 0.00 0.00 9.60 100.55 2006.73 2000.00 2114.00 2 4.680 50.00 6120.00 25.13 25.88 0.00 0.00 9.60 100.55 2005.14 2000.00 </td <td></td> <td>4.660</td> <td>50.00</td> <td>8300.00</td> <td>25.65</td> <td>26.49</td> <td>0.00</td> <td>0.00</td> <td>9.30</td> <td>1066.98</td> <td>2006.70</td> <td>2000.00</td> <td>2114.00</td> <td>3074.02</td>		4.660	50.00	8300.00	25.65	26.49	0.00	0.00	9.30	1066.98	2006.70	2000.00	2114.00	3074.02
4.670 31.00 5270.00 24.26 24.91 24.70 25.70 9.30 100.55 2006.72 2000.00 2114.00 2 4.670 31.00 6120.00 24.89 25.64 24.70 25.70 9.30 719.36 2006.71 2000.00 2114.00 2 4.670 31.00 8300.00 26.51 26.91 24.70 25.70 9.30 1247.02 2004.82 2000.00 2114.00 3 4.680 50.00 3470.00 22.75 23.22 0.00 0.00 9.60 100.49 2006.76 2000.00 2114.00 2 4.680 50.00 5270.00 24.48 25.14 0.00 0.00 9.60 100.49 206.76 2000.00 2114.00 2 4.680 50.00 6120.00 25.13 25.88 0.00 0.00 9.60 100.55 2006.73 2000.00 2114.00 2 4.680 50.00 8300.00 26.68 27.13 0.00 0.00 15.00 649.00 872.96 950.00 1103.00 <td></td> <td>4.670</td> <td>31.00</td> <td>3470.00</td> <td>22.55</td> <td>23.00</td> <td>24.70</td> <td>25.70</td> <td>9.30</td> <td>100.49</td> <td>2006.75</td> <td>2000.00</td> <td>2114.00</td> <td>2107.24</td>		4.670	31.00	3470.00	22.55	23.00	24.70	25.70	9.30	100.49	2006.75	2000.00	2114.00	2107.24
4.670 31.00 6120.00 24.89 25.64 24.70 25.70 9.30 719.36 2006.71 2000.00 2114.00 2 4.670 31.00 8300.00 26.51 26.91 24.70 25.70 9.30 1247.02 2004.82 2000.00 2114.00 2 4.680 50.00 3470.00 22.75 23.22 0.00 0.00 9.60 100.49 2006.76 2000.00 2114.00 2 4.680 50.00 5270.00 24.48 25.14 0.00 0.00 9.60 100.55 2006.73 2000.00 2114.00 2 4.680 50.00 6120.00 25.13 25.88 0.00 0.00 9.60 100.55 2006.72 2000.00 2114.00 2 4.680 50.00 3470.00 24.30 24.39 0.00 0.00 9.60 1214.94 2005.14 2000.00 2114.00 2 4.820 850.00 5270.00 26.62 26.10 0.00 15.00 15.00 173.50 950.00 1103.00 1		4.670	31.00	5270.00	24.26	24.91	24.70	25.70	9.30	100.55	2006.72	2000.00	2114.00	2107.27
4.670 31.00 8300.00 26.51 26.91 24.70 25.70 9.30 1247.02 2004.82 2000.00 2114.00 33 4.680 50.00 3470.00 22.75 23.22 0.00 0.00 9.60 100.49 2006.76 2000.00 2114.00 2 4.680 50.00 5270.00 24.48 25.14 0.00 0.00 9.60 100.55 2006.76 2000.00 2114.00 2 4.680 50.00 6120.00 25.13 25.88 0.00 0.00 9.60 683.11 2006.72 2000.00 2114.00 2 4.680 50.00 8300.00 26.68 27.13 0.00 0.00 9.60 1214.94 2005.14 2000.00 2114.00 2 4.820 850.00 3470.00 24.30 24.39 0.00 0.00 15.00 649.00 872.96 950.00 1103.00 1 4.820 850.00 6120.00 26.70 26.77 0.00 0.00 15.00 1206.03 571.30 950.00 1103.00 <td></td> <td>4.670</td> <td>31.00</td> <td>6120.00</td> <td>24.89</td> <td>25.64</td> <td>24.70</td> <td>25.70</td> <td>9.30</td> <td>719.36</td> <td>2006.71</td> <td>2000.00</td> <td>2114.00</td> <td>2731.50</td>		4.670	31.00	6120.00	24.89	25.64	24.70	25.70	9.30	719.36	2006.71	2000.00	2114.00	2731.50
4.680 50.00 3470.00 22.75 23.22 0.00 0.00 9.60 100.49 206.76 2000.00 2114.00 2 4.680 50.00 5270.00 24.48 25.14 0.00 0.00 9.60 100.55 2006.76 2000.00 2114.00 2 4.680 50.00 6120.00 25.13 25.88 0.00 0.00 9.60 683.11 2006.72 2000.00 2114.00 2 4.680 50.00 8300.00 26.68 27.13 0.00 0.00 9.60 1214.94 2005.14 2000.00 2114.00 2 4.820 850.00 3470.00 24.30 24.39 0.00 0.00 15.00 649.00 872.96 950.00 1103.00 1 4.820 850.00 6120.00 26.70 26.77 0.00 0.00 15.00 1206.03 571.30 950.00 1103.00 1 4.820 850.00 3470.00 24.77 24.95 0.00 0.00 15.00 1503.27 419.06 950.00 1103.00		4.670	31.00	8300.00	26.51	26.91	24.70	25.70	9.30	1247.02	2004.82	2000.00	2114.00	3251.84
4.680 50.00 5270.00 24.48 25.14 0.00 0.00 9.60 100.55 2006.73 2000.00 2114.00 2 4.680 50.00 6120.00 25.13 25.88 0.00 0.00 9.60 683.11 2006.72 2000.00 2114.00 2 4.680 50.00 8300.00 26.68 27.13 0.00 0.00 9.60 1214.94 2005.14 2000.00 2114.00 2 4.820 850.00 3470.00 24.30 24.39 0.00 0.00 15.00 649.00 872.96 950.00 1103.00 1 4.820 850.00 5270.00 26.02 26.10 0.00 0.00 15.00 978.56 666.67 950.00 1103.00 1 4.820 850.00 6120.00 26.77 26.77 0.00 0.00 15.00 1206.03 571.30 950.00 1103.00 1 4.820 850.00 3470.00 24.77 24.95 0.00 0.00 15.00 1503.27 419.06 950.00 1103.00		4.680	50.00	3470.00	22.75	23.22	0.00	0.00	9.60	100.49	2006.76	2000.00	2114.00	2107.24
4.680 50.00 6120.00 25.13 25.88 0.00 0.00 9.60 683.11 2006.72 2000.00 2114.00 2 4.680 50.00 8300.00 26.68 27.13 0.00 0.00 9.60 1214.94 2005.14 2000.00 2114.00 3 4.820 850.00 3470.00 24.30 24.39 0.00 0.00 15.00 649.00 872.96 950.00 1103.00 1 4.820 850.00 5270.00 26.02 26.10 0.00 0.00 15.00 978.56 666.67 950.00 1103.00 1 4.820 850.00 6120.00 26.70 26.77 0.00 0.00 15.00 1206.03 571.30 950.00 1103.00 1 4.820 850.00 3470.00 24.77 24.95 0.00 0.00 15.00 1503.27 419.06 950.00 1103.00 1 4.900 400.00 3470.00 24.77 24.95 0.00 0.00 15.00 1503.27 419.06 950.00 1103.00		4.680	50.00	5270.00	24.48	25.14	0.00	0.00	9.60	100.55	2006.73	2000.00	2114.00	2107.27
4.680 50.00 8300.00 26.68 27.13 0.00 0.00 9.60 1214.94 2005.14 2000.00 2114.00 3 4.820 850.00 3470.00 24.30 24.39 0.00 0.00 15.00 649.00 872.96 950.00 1103.00 1 4.820 850.00 5270.00 26.02 26.10 0.00 0.00 15.00 978.56 666.67 950.00 1103.00 1 4.820 850.00 6120.00 26.70 26.77 0.00 0.00 15.00 1206.03 571.30 950.00 1103.00 1 4.820 850.00 8300.00 27.79 27.86 0.00 0.00 15.00 1206.03 571.30 950.00 1103.00 1 4.820 850.00 8300.00 27.79 27.86 0.00 0.00 15.00 1206.03 571.30 950.00 1103.00 1 4.900 400.00 3470.00 24.77 24.95 0.00 0.00 15.50 601.78 1774.70 2023.00 2067.00 <td></td> <td>4.680</td> <td>50.00</td> <td>6120.00</td> <td>25.13</td> <td>25.88</td> <td>0.00</td> <td>0.00</td> <td>9.60</td> <td>683.11</td> <td>2006.72</td> <td>2000.00</td> <td>2114.00</td> <td>2695.70</td>		4.680	50.00	6120.00	25.13	25.88	0.00	0.00	9.60	683.11	2006.72	2000.00	2114.00	2695.70
4.820 850.00 3470.00 24.30 24.39 0.00 0.00 15.00 649.00 872.96 950.00 1103.00 1 4.820 850.00 5270.00 26.02 26.10 0.00 0.00 15.00 978.56 666.67 950.00 1103.00 1 4.820 850.00 6120.00 26.70 26.77 0.00 0.00 15.00 1206.03 571.30 950.00 1103.00 1 4.820 850.00 8300.00 27.79 27.86 0.00 0.00 15.00 1503.27 419.06 950.00 1103.00 1 4.900 400.00 3470.00 24.77 24.95 0.00 0.00 15.00 1503.27 419.06 950.00 1103.00 1 4.900 400.00 5270.00 26.39 26.52 0.00 0.00 15.50 601.78 1774.70 2023.00 2067.00 2 4.900 400.00 6120.00 27.03 27.15 0.00 0.00 15.50 658.83 1737.20 2023.00 2067.00 </td <td></td> <td>4.680</td> <td>50.00</td> <td>8300.00</td> <td>26.68</td> <td>27.13</td> <td>0.00</td> <td>0.00</td> <td>9.60</td> <td>1214.94</td> <td>2005.14</td> <td>2000.00</td> <td>2114.00</td> <td>3220.08</td>		4.680	50.00	8300.00	26.68	27.13	0.00	0.00	9.60	1214.94	2005.14	2000.00	2114.00	3220.08
4.820 850.00 5270.00 26.02 26.10 0.00 15.00 978.56 666.67 950.00 1103.00 1 4.820 850.00 6120.00 26.70 26.77 0.00 0.00 15.00 978.56 666.67 950.00 1103.00 1 4.820 850.00 6120.00 27.79 27.86 0.00 0.00 15.00 1206.03 571.30 950.00 1103.00 1 4.820 850.00 3470.00 24.77 24.95 0.00 0.00 15.50 601.78 174.70 2023.00 2067.00 2 4.900 400.00 5270.00 26.39 26.52 0.00 0.00 15.50 601.78 1774.70 2023.00 2067.00 2 4.900 400.00 6120.00 27.03 27.15 0.00 0.00 15.50 651.83 1737.20 2023.00 2067.00 2 4.900 400.00 8300.00 28.10 28.23 0		4.820	850.00	3470.00	24.30	24.39	0.00	0.00	15.00	649.00	872.96	950.00	1103.00	1556.01
4.820 850.00 6120.00 26.70 26.77 0.00 0.00 15.00 1206.03 571.30 950.00 1103.00 1 4.820 850.00 8300.00 27.79 27.86 0.00 0.00 15.00 1206.03 571.30 950.00 1103.00 1 4.900 400.00 3470.00 24.77 24.95 0.00 0.00 15.50 601.78 1774.70 2023.00 2067.00 2 4.900 400.00 5270.00 26.39 26.52 0.00 0.00 15.50 601.78 1774.70 2023.00 2067.00 2 4.900 400.00 5270.00 26.39 26.52 0.00 0.00 15.50 601.78 1774.70 2023.00 2067.00 2 4.900 400.00 6120.00 27.03 27.15 0.00 0.00 15.50 725.29 1715.97 2023.00 2067.00 2 4.900 400.00 8300.00 28.10 <t< td=""><td></td><td>4 820</td><td>850.00</td><td>5270 00</td><td>26.02</td><td>26.10</td><td>0.00</td><td>0.00</td><td>15.00</td><td>978 56</td><td>666 67</td><td>950.00</td><td>1103.00</td><td>1645 23</td></t<>		4 820	850.00	5270 00	26.02	26.10	0.00	0.00	15.00	978 56	666 67	950.00	1103.00	1645 23
4.820 850.00 8300.00 27.79 27.86 0.00 0.00 15.00 1503.27 419.06 950.00 1103.00 1 4.900 400.00 3470.00 24.77 24.95 0.00 0.00 15.50 601.78 1774.70 2023.00 2067.00 2 4.900 400.00 5270.00 26.39 26.52 0.00 0.00 15.50 665.83 1737.20 2023.00 2067.00 2 4.900 400.00 6120.00 27.03 27.15 0.00 0.00 15.50 725.29 1715.97 2023.00 2067.00 2 4.900 400.00 8300.00 28.10 28.23 0.00 0.00 15.50 1098.32 1404.13 2023.00 2067.00 2		4.020	860.00	6120 00	26.20	26.22	0.00	0.00	15.00	1206 03	521 30	950.00	1103 00	1222 33
4.820 850.00 8300.00 27.79 27.86 0.00 0.00 15.00 1505.27 419.06 950.00 1103.00 1 4.900 400.00 3470.00 24.77 24.95 0.00 0.00 15.50 601.78 1774.70 2023.00 2067.00 2 4.900 400.00 5270.00 26.39 26.52 0.00 0.00 15.50 651.83 1737.20 2023.00 2067.00 2 4.900 400.00 6120.00 27.03 27.15 0.00 0.00 15.50 725.29 1715.97 2023.00 2067.00 2 4.900 400.00 8300.00 28.10 28.23 0.00 0.00 15.50 1098.32 1404.13 2023.00 2067.00 2		9.820	850.00	0120.00	20.70	20.77	0.00	0.00	15.00	1200.03	110.06	950.00	1103.00	1022 33
4.900 400.00 3470.00 24.77 24.95 0.00 0.00 15.50 601.78 1774.70 2023.00 2067.00 2 4.900 400.00 5270.00 26.39 26.52 0.00 0.00 15.50 665.83 1737.20 2023.00 2067.00 2 4.900 400.00 6120.00 27.03 27.15 0.00 0.00 15.50 725.29 1715.97 2023.00 2067.00 2 4.900 400.00 8300.00 28.10 28.23 0.00 0.00 15.50 1098.32 1404.13 2023.00 2067.00 2		4.820	850.00	8300.00	21.19	21.80	0.00	0.00	15.00	1503.27	419.06	950.00	1103.00	1744.33
4.900 400.00 5270.00 26.39 26.52 0.00 0.00 15.50 65.83 1737.20 2023.00 2067.00 2 4.900 400.00 6120.00 27.03 27.15 0.00 0.00 15.50 725.29 1715.97 2023.00 2067.00 2 4.900 400.00 8300.00 28.10 28.23 0.00 0.00 15.50 1098.32 1404.13 2023.00 2067.00 2		4.900	400.00	3470.00	24.77	24.95	0.00	0.00	15.50	601.78	1774.70	2023.00	2067.00	2376.47
4.900 400.00 6120.00 27.03 27.15 0.00 0.00 15.50 725.29 1715.97 2023.00 2067.00 2 4.900 400.00 8300.00 28.10 28.23 0.00 0.00 15.50 1098.32 1404.13 2023.00 2067.00 2		4.900	400.00	5270.00	26.39	26.52	0.00	0.00	15.50	665.83	1737.20	2023.00	2067.00	2403.03
4.900 400.00 8300.00 28.10 28.23 0.00 0.00 15.50 1098.32 1404.13 2023.00 2067.00 2	•	4.900	400.00	6120.00	27.03	27.15	0.00	0.00	15.50	725.29	1715.97	2023.00	2067.00	2441.26
	•	4.900	400.00	8300.00	28.10	28.23	0.00	0.00	15.50	1098.32	1404.13	2023.00	2067.00	2502.45
	Run Date:	18NOV97	Run Time:	13:50:57	HMVersi	on: 6.52	Data Fil	e: SCAP	C875.DAT			Page 4	2	
---	-----------	---------	-----------	----------	---------	----------	----------	---------	----------	---------	---------	---------	---------	
	SECNO	XLCH	Q	CWSEL	EC	ELTRD	ELLC	ELMIN	TOPWID	SSTA	STCHL	STCHR	ENDST	
	4.940	200.00	3470.00	25.23	25.52	0.00	0.00	16.00	600 96	1775 41	2023.00	2067 00	2376 37	
	4.940	200.00	5270.00	26.72	26.97	0.00	0.00	16.00	650.74	1742.59	2023.00	2067 00	2393 33	
	4.940	200.00	6120.00	27.33	27.56	0.00	0.00	16.00	707.26	1722.41	2023.00	2067.00	2429.67	
	4.940	200.00	8300.00	28.40	28.65	0.00	0.00	16.00	801.76	1692.06	2023.00	2067.00	2493.82	
	4.970	150.00	3470.00	25.49	26.79	0.00	0.00	16.50	64.21	2011.28	2025.00	2080.00	2075 49	
	4.970	150.00	5270.00	26.97	28.48	0.00	0.00	16.50	446.04	1630.93	2025.00	2080.00	2076.97	
٠	4.970	150.00	6120.00	27.46	28,92	0.00	0.00	16.50	461.14	1616.32	2025.00	2080.00	2077.46	
•	4.970	150.00	8300.00	28.64	29.78	0.00	0.00	16.50	797.87	1280.77	2025.00	2080.00	2078.64	
	5.000	130.00	3470.00	27.33	27.47	0.00	0.00	17.20	538.73	1570.14	2025.00	2120.00	2108.88	
٠	5.000	130.00	5270.00	29.00	29.12	0.00	0.00	17.20	715.72	1395.11	2025.00	2120.00	2110.83	
٠	5.000	130.00	6120.00	29.44	29.56	0.00	0.00	17.20	788.62	1322.72	2025.00	2120.00	2111.34	
•	5.000	130.00	8300.00	30.26	30.40	0.00	0.00	17.20	909.34	1203.17	2025.00	2120.00	2112.51	
	5.210	1100.00	3470.00	29.66	29.89	0.00	0.00	22.30	329.35	1847.61	2003.00	2111.00	2176.96	
	5.210	1100.00	5270.00	30.98	31.23	0.00	0.00	22.30	935.07	803.75	2003.00	2111.00	2178.51	
	5.210	1100.00	6120.00	31.44	31.69	0.00	0.00	22.30	1021.73	764.32	2003.00	2111.00	2179.05	
	5.210	1100.00	8300.00	32.40	32.67	0.00	0.00	22.30	1181,54	695.85	2003.00	2111.00	2180.18	
	5.320	560.00	3470.00	31.45	32.66	0.00	0.00	23.30	71.04	2006.38	2000.00	2085.00	2077.42	
٠	5.320	560.00	5270.00	32.71	34.50	0.00	0.00	23.30	235.24	1844.28	2000.00	2085.00	2079.52	
٠	5.320	560.00	6120.00	33.13	35.13	0.00	0.00	23.30	246.72	1833.48	2000.00	2085.00	2080.20	
•	5.320	560.00	8300.00	34.78	36.26	0.00	0.00	23.30	628.45	1430.47	2000.00	2085.00	2082.97	
	5.380	330.00	3470.00	34.13	34.88	0.00	0.00	24.50	111.90	1926.17	1980.00	2105.00	2099.13	
٠	5.380	330.00	5270.00	36.00	36.75	0.00	0.00	24.50	230.95	1870.05	1980.00	2105.00	2101.00	
٠	5.380	330.00	6120.00	36.59	37.35	0.00	0.00	24.50	508.32	1432.94	1980.00	2105.00	2101.59	
	5.380	330.00	8300.00	37.31	38.22	0.00	0.00	24.50	673.03	1370.68	1980.00	2105.00	2102.31	
•	5.430	280.00	3470.00	35.25	35.66	0.00	0.00	25.40	164.47	1946.64	2003.00	2102.00	2111.11	
٠	5.430	280.00	5270.00	36.94	37.46	0.00	0.00	25.40	256.98	1856.46	2003.00	2102.00	2113.43	
٠	5.430	280.00	6120.00	37.47	38.06	0.00	0.00	25.40	285.55	1828.60	2003.00	2102.00	2114.15	
•	5.430	280.00	8300.00	38.26	39.06	0.00	0.00	25.40	524.56	1590.68	2003.00	2102.00	2115.25	
	5.550	640.00	3470.00	36.36	36.75	0.00	0.00	25.50	380.23	1586.36	2020.00	2070.00	2068.35	
	5.550	640.00	5270.00	38.09	38.34	0.00	0.00	25.50	502.86	1566.28	2020.00	2070.00	2069.13	
	5.550	640.00	6120.00	38.69	38.92	0.00	0.00	25.50	726.16	1343.25	2020.00	2070.00	2069.40	
•	5.550	640.00	8300.00	39.78	39.99	0.00	0.00	25,50	975.96	1093.94	2020.00	2070.00	2069.90	
•	5.630	410.00	1930.00	37.10	37.62	0.00	0.00	26.00	253.41	967.08	1000.00	1060.00	1220.49	
•	5.630	410.00	2900.00	38.52	39.01	0.00	0.00	26.00	335.64	890.66	1000.00	1060.00	1226.30	
٠	5.630	410.00	3360.00	39.07	39.53	0.00	0.00	26.00	388.57	839.09	1000.00	1060.00	1227.66	
•	5.630	410.00	4450.00	40.13	40.54	0.00	0.00	26.00	490.30	740.01	1000.00	1060.00	1230.31	
	5.830	1060.00	1930.00	39.12	39.43	0.00	0.00	27.40	237.49	1761.61	2004.00	2060.00	2048.29	
	5.830	1060.00	2900.00	40.38	40.72	0.00	0.00	27.40	292.02	1754.55	2004.00	2060.00	2050.43	
	5.830	1060.00	3360.00	40.83	41.20	0.00	0.00	27.40	297.19	1754.02	2004.00	2060.00	2051.21	
	5.830	1060.00	4450.00	41.79	42.17	0.00	0.00	27.40	304.73	1752.88	2004.00	2060.00	2057.62	

٠

. .

. . . .

....

ENDST 11 25 89 89 89 89 2221.22231.22245. 2216. 2281. 2284. 2288. 2053 2053 2093 2090. 2090. 2090. 2062 2316 2455 2312.25566.25590. 2367.2367.2567 3 STCHR 051.00 051.00 051.00 8888 8888 00000 88888 8888 8888 8888 8888 8888 2093.2093.2093. 2090.2090.2090. 2064.2064.2064. 2051 2062 2059 2059 2093.2093.2093.2093. 2059 2051205120512051 Page 0000 0000 8888 8888 8888 8888 8888 8888 88888 8888 STCHL 1980. 1980. 2011 1960. 2010.22010.22010.2 950 2001 2004 2001 2001 2001 2001 9410 2005 86000 40059 60069 00000 00000 31 28 2550 SSTA 904. 2006 2011.22011.22011.1596. 1966. 1960. 1960. 1214.11186. 2015.2015.1751. 1905.1903.1902 2006 2006.1896.1533. TOPWID 297.17 318.89 329.06 344.77 9696 SCAPC875. DA1 310.3377. 159.1214.1229. 242 35 35 ELMIN 30.000 30.000 30.000 228.50 228.50 228.50 227.70 227.70 227.70 227.70 227.70 227.70 228.90 228.90 228.90 228.90 228.90 228.90 227.70 227.70 227.70 227.70 228.90 228.50 228.50 228.50 228.50 228.50 228.50 228.50 228.50 228.50 228.50 228.50 228.50 228.50 227.70 228.50 228.50 228.50 228.50 228.50 228.50 228.50 228.50 228.50 228.50 228.50 228.50 227.70 227.70 228.50 228.50 228.50 227.70 227.70 228.50 228.50 228.50 227.70 228.50 239.50 231.50 239 P110: Data 211C 6.52 HMVersion: 8 9939 13:50:57 CMS.EL 42.15 42.64 44.44 47.10 47.10 42.86 42.86 42.77 45.77 4044 4404 2000 20.00 Time 0000 0000 00000 00000 **66666 66666 66666 66666 66666 66666** 2900. 2900. 0.1930. 2900. 1930. 1930. 2900. 3360. 1930. 2900. 3360. 1930. 23900. 3360. 2900.33560. 22900. Run 8888 8888 8888 00000 00000 8888 0000 7 6VON81 XLCH 360.0 360.0 360.0 9999 300. 0000 0000 0000 390. 0000 0000 0000 6.110 6.110 6.110 6.110 6.115 6.115 6.115 6.115 120 6.130 6.130 6.130 6.130 6.135 6.135 6.135 6.135 6.150 6.150 6.150 6.150 230 6.300 6.300 6.300 310 Date: 060 SECNO 0000 Run

FRUST 2830. 20055. 2602.2652.2651. 20999.2446. 2085. 2122. 2130. 2563. 2539 2049 2445 \$3 <u>....</u> 8888 8888 STCHR 2056.2056.2056.2056.2056.2056.2056.205556.205556.205556.205556.205556.20556.20556.20556.20556.205556.205556.205556.205556.205556.2050 2049. 2049. 1051 053 049 063 063 063 063 063 063 063 063 063 age 0000 2005 2003. 2003 2016. 2016. 2016. 00000 0003 8450 44000 1084 44000 6400 98010 2015.1750. 2003. 2003.1585.1586.1536. 1583. 1728.1728.1728. 757. 742 633 827 758 758 682 608 582 543 993 961 796 765 22000 24 **DIWIOT** DAT 281. 590. 719. SCAPC875 NIWIS File: Data BLLC 6.52 SLTRD 2000 HMVersion: BG 43.80 45.94 45.94 45.94 45.94 45.94 45.98 45.98 45.98 45.98 45.98 45.91 48.13 48.13 48.13 48.13 48.13 49.88 49.98 40.16 40.16 40.18 40.1 13:50:57 CWSEL Time: 00000 00000 00000 00000 00000 1930. 2900. 3360. 1930. 3360. 1930. 1930. 1930. 23600. Q 1930. 3360. 2900. 2900. 1930. 23900.33360.4450. Run 00000 00000 8888 8888 18NOV91 350. 020 6.750 6.750 6.750 6.750 6.760 6.760 6.760 6.770 6.770 6.770 6.770 6.780 6.780 6.780 6.780 7.4307.4307.4307.43077.43077.43077.430777.440 6.315 6.315 6.315 6.315 320 5000 Date SECNO 2000 Kun ٠ . . .

2031.85 2231.30 2233.88 2307.45 1000 39 0.00 5508 822.03 93 93 93 93 ENDS? 2112.2124.2130.2140. 2132. 2239. 2229. 2283. 2304. 23316.23335.23340. 2085. 2112. 2114. 2114. 2060. 2061. 2062. 2242. 2215. 2251. 2321. \$\$ 8888 00000 8888 8888 8888 8888 8888 8888 8000 8000 STCHR 2050. 2076.2076.2076. 2070. 2042. 2054 Page 2063 8888 8888 8888 8888 8888 8888 8888 STCHL 988. 2000.2 1988. 1988. 1988. 2002 2003 2000 2005 20004 2002 2006 02200 63 200 30.00 80.46 11 23 00001 2000 158 66 466 47 47 47 47 SSTA 1740. 1985. 2000. 1792. 1770. 1979. 1869. 2000. 1799. 1773. 1697. 2002 1933.1923.1923. 583 543 543 2002 120 TOPWID DAT 63. 362. 2259.314. 219.274. 220.2238. 223 2252. 477. 507. 541. 249 SCAPC875. F110: Data 3 é HWVersion: 50.80 54.51 55.27 55.27 55.27 55.285 55 22228 22288 0000 CMSEL CMSEL 50. 50 51. 19 52. 53 54. 19 54. 19 55. 55 55. 57 55. 53 13:50: Time: 8888 8888 8888 8888 8888 8888 8888 0 1930. 3360. 2900.3360. 2690.3115. 1795. 2690. 3115. 4125. 1795. 2690. 3115. 4125. 1795. 2690. 3115. 4125. 1795. 2690. 3115. 4125. 1795. 2690. 3115. 4125. 2585.2585.25890.3960. 1730.22585.22990.3960. Run 2200.00 2200.00 2200.00 3800.00 3800.00 3800.00 0000 0000 0000 0000 18NOV97 XLCH 950. 000.00 700.700.700. 2000 2000 450 7.460 7.870 7.870 7.870 7.870 580 580 580 8.750 8.750 8.750 8.750 .760 8.770 8.770 8.770 8.770 8.770 780.780.780.780.780 .880 .880 .880 9.230 9.230 9.230 9.230 Date: SECNO 00 00 00 00 0000 Run

	Run Date:	18N0V97	Run Time:	13:50:57	HMVersi	on: 6.52	Data Fil	e: SCAP	C875.DAT			Page 4	17
	SECNO	XLCH	Q	CWSEL	EG	ELTRD	ELLC	ELMIN	TOPWID	SSTA	STCHL	STCHR	ENDST
	9.500	1350.00	1730.00	69.69	69.85	0.00	0.00	63.60	389.97	1900.05	2006.00	2049.00	2290.02
	9.500	1350.00	2585.00	70.13	70.35	0.00	0.00	63.60	461.55	1889.68	2006.00	2049.00	2351.23
	9.500	1350.00	2990.00	70.32	70.57	0.00	0.00	63.60	468.41	1884.82	2006.00	2049.00	2353.23
•	9.500	1350.00	3960.00	70.91	71.16	0.00	0.00	63.60	488.47	1870.59	2006.00	2049.00	2359.06
•	9.600	530.00	1730.00	72.68	73.30	0.00	0.00	65.00	450.24	554.10	1000.00	1050.00	1047.66
	9.600	530.00	2585.00	73.30	73.84	0.00	0.00	65.00	487.75	551.01	1000.00	1050.00	1049.42
	9.600	530.00	2990.00	73.55	74.06	0.00	0.00	65.00	806.60	98.63	1000.00	1050.00	1052.20
	9.600	530.00	3960.00	73.98	74.46	0.00	0.00	65.00	858.12	87.89	1000.00	1050.00	1069.37
	9.620	100.00	1730.00	73.64	73.94	0.00	0.00	65.50	478.19	551.80	1000.00	1050.00	1048.97
	9.620	100.00	2585.00	74.17	74.49	0.00	0.00	65.50	820.50	95.73	1000.00	1050.00	1056.83
	9.620	100.00	2990.00	74.37	74.69	0.00	0.00	65.50	845.42	90.54	1000.00	1050.00	1065.14
	9.620	100.00	3960.00	74.76	75.09	0.00	0.00	65.50	891.84	80.87	1000.00	1050.00	1080.61
	9.710	\$20.00	1730.00	75.87	76.49	0.00	0.00	66.20	111.37	1870.34	2000.00	2042.00	2041.87
	9.710	520.00	2585.00	76.78	77.62	0.00	0.00	66.20	209.94	1834.05	2000.00	2042.00	2043.99
	9.710	520.00	2990.00	77.04	77.99	0.00	0.00	66.20	220.26	1826.74	2000.00	2042.00	2047.00
	9.710	520.00	3960.00	77.59	78.72	0.00	0.00	66.20	378.21	1383.98	2000.00	2042.00	2053.20
	9.720	50.00	1730.00	76.14	76.80	0.00	0.00	66.60	38.70	2003.15	2000.00	2042.00	2041.85
	9.720	50.00	2585.00	77.15	78.05	0.00	0.00	66.60	207.15	1834.85	2000.00	2042.00	2042.00
	9.720	50.00	2990.00	77.44	78.45	0.00	0.00	66.60	215.44	1826.56	2000.00	2042.00	2042.00
	9.720	50.00	3960.00	78.06	79.27	0.00	0.00	66.60	438.95	1371.41	2000.00	2042.00	2042.00
	9.730	11.00	1730.00	76.19	76.91	78.00	77.70	67.00	38.29	2003.51	2000.00	2042.00	2041.79
	9.730	11.00	2585.00	77.21	78.62	78.00	77.70	67.00	193.28	1843.86	2000.00	2042.00	2041.97
•	9.730	11.00	2990.00	78.09	79.02	78.00	77.70	67.00	232.82	1809.18	2000.00	2042.00	2042.00
•	9.730	11.00	3960.00	77.87	79.71	78.00	77.70	67.00	216.13	1825.87	2000.00	2042.00	2042.00
	9.740	50.00	1730.00	76.36	77.14	0.00	0.00	67.40	38.03	2003.72	2000.00	2042.00	2041.75
•	9.740	50.00	2585.00	78.56	79.23	0.00	0.00	67.40	246.93	1803.68	2000.00	2042.00	2050.61
	9.740	50.00	2990.00	78.29	79.33	0.00	0.00	67.40	222.21	1825.36	2000.00	2042.00	2047.57
	9,740	50.00	3960.00	78,27	80.11	0.00	0.00	67.40	221.41	1825.92	2000.00	2042.00	2047.33
	9.860	600.00	1730.00	79.76	80.51	0.00	0.00	72.00	138.06	1966.84	2000.00	2059.00	2104.90
	9.860	600.00	2585.00	80.97	81.64	0.00	0.00	72.00	325.92	1842.48	2000.00	2059.00	2168.41
	9.860	600.00	2990.00	81.48	82.07	0.00	0.00	72.00	367.79	1822.44	2000.00	2059.00	2190.22
•	9.860	600.00	3960.00	82.58	83.02	0.00	0.00	72.00	421.74	1816.34	2000.00	2059.00	2238.08
	9.930	350.00	1730.00	82.80	83.77	0.00	0.00	74.00	175.69	1004.78	1000.00	1059.00	1180.47
•	9.930	350.00	2585.00	83.50	84.65	0.00	0.00	74.00	222.98	1002.00	1000.00	1059.00	1224.98
•	9.930	350.00	2990.00	83.83	84.97	0.00	0.00	74.00	240.68	1000.69	1000.00	1059.00	1241.37
•	9.930	350.00	3960.00	84.32	85.62	0.00	0.00	74.00	344.45	954.10	1000.00	1059.00	1298.56
	9.970	200.00	1600.00	84.67	85.23	0.00	0.00	74.80	51.99	1983.67	1995.00	2037.00	2035.66
	9.970	200.00	2000.00	85.55	86.19	0.00	0.00	74.80	247.78	1727.03	1995.00	2037.00	2037.44
	9.970	200.00	2210.00	85.84	86.51	0.00	0.00	74.80	346.82	1682.47	1995.00	2037.00	2039.78
	9,970	200.00	2750.00	86.53	87.19	0.00	0.00	74.80	457.37	1587.99	1995.00	2037.00	2045.36

	Run Date:	18NOV97	Run Time:	13:50:57	HMVersi	on: 6.52	Data Fil	e: SCAP	C875.DAT			Page 4	8
	SECNO	XLCH	Q	CWSEL	EG	ELTRD	ELLC	ELMIN	TOPWID	SSTA	STCHL	STCHR	ENDST
	9.980 9.980 9.980 9.980 9.980	100.00 100.00 100.00 100.00	1600.00 2000.00 2210.00 2750.00	85.11 86.00 86.29 86.96	86.02 86.95 87.21 87.68	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	75.60 75.60 75.60 75.60	27.16 350.14 416.12 520.39	2003.84 1562.84 1535.44 1467.59	2003.00 2003.00 2003.00 2003.00	2031.00 2031.00 2031.00 2031.00	2031.00 2031.00 2031.00 2031.00
:	9.990 9.990 9.990 9.990	19.00 19.00 19.00 19.00	1660.00 2480.00 2870.00 3800.00	85.21 86.09 87.17 87.90	86.22 87.82 88.11 88.56	85.70 85.70 85.70 85.70	86.20 86.20 86.20 86.20	75.80 75.80 75.80 75.80	27.13 323.61 522.34 644.45	2003.87 1573.32 1466.30 1388.55	2003.00 2003.00 2003.00 2003.00	2031.00 2031.00 2031.00 2031.00	2031.00 2031.00 2031.00 2033.00
:	10.000 10.000 10.000 10.000	50.00 50.00 50.00 50.00	1660.00 2480.00 2870.00 3800.00	86.64 88.63 88.50 88.78	86.73 88.69 88.58 88.89	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	76.20 76.20 76.20 76.20	539.63 712.62 692.30 734.97	1521.51 1355.15 1375.03 1333.29	1994.00 1994.00 1994.00 1994.00	2046.00 2046.00 2046.00 2046.00	2061.14 2067.77 2067.33 2068.26

Run Date: 18NOV97 Run Time: 13:50:57 NMVersion: 6.52 Data File: SCAPC875.DAT

SUMMARY OF ERRORS AND SPECIAL NOTES

WARNING	SECTIO-	4.480	PROPILIES	-	CONVEYANCE	CHANGE	CUTSTDE	ACCRPTABLE	RANCE
WARNING	SECNOw	4.480	PROPILIES	-	CONVEYANCE	CHANGE	OUTSTDR	ACCEPTABLE	RANGE
WARNING	SECNO=	4.480	PROPILE=	m	CONVEYANCE	CHANCE	301STUO	ACCEPTABLE	RANGE
WARWING	SECNOR	4.480	PROFILE=	4	CONVEYANCE	CHANGE	OUTSIDE	ACCEPTABLE	RANGE
WARNING	SECNO.	4.650	PROPILES	-1	CONVEYANCE	CHANGE	301STUO	ACCEPTABLE	RANCE
WARNING	SECNO=	4.650	PROPILE=	~	CONVEYANCE	CHANGE	SUISTOS	ACCEPTABLE	RANGE
WARNING	SECNO=	4.650	PROFILE=	m	CONVEYANCE	CHANCE	SUISIDE	ACCEPTABLE	RANGE
WARNING	SECNO=	4.650	PROPILE=	4	CONVEYANCE	CHUNCE	SUTSTDE	ACCEPTABLE	RANKOE
WARNING	SECNO#	4.680	PROPILE=	4	CONVEYANCE	CHANCE	OUTSIDE	ACCEPTABLE	RANGE
WARNING	SECNO=	4.820	PROFILE=	-	CONVEYANCE	CHANGE	SUTSIDE	ACCEPTABLE	RANCE
WARNING	SECNO=	4.820	PROPILE=	~	CONVEYANCE	CHANGE	SUTSIDE	ACCEPTABLE	RANGE
WARNING	SECNO=	4.820	PROPILE=	m	CONVEYANCE	CHANGE	3012100	ACCEPTABLE	RANGE
WARNING	SECNOw	4.820	PROFILE	4	CONVEYANCE	CHANGE	OUTSIDE	ACCEPTABLE	RANGE
WARWING	SECNO=	4.900	PROFILE=	-1	CONVEYANCE	CHANGE	SUTSIDE	ACCEPTABLE	RANGE
WARNING	SECNO=	4.900	PROFILE=	~	CONVEYANCE	CHANGE	SUISTOO	ACCEPTABLE	RANGE
WARNING	SECNO=	4.900	PROPILE=	~	CONVEYANCE	CHUNGE	301STUO	ACCEPTABLE	RANGE
WARWING	SECNO#	4.900	PROFILE=	*	CONVEYANCE	CHANGE	SUISTUO	ACCEPTABLE	RANGE
WARNING	SECNO=	4.970	PROFILE=	-	CONVEYANCE	CHANGE	OUTSIDE	ACCEPTABLE	RUNGE
CAUTION	SECNO=	4.970	PROPILES	2	CRITICAL DE	SPTH ASS	COMED		
CAUTION	SECNO=	4.970	PROFILE=	~	MINIMUM SPE	CIPIC F	NERGY		
CAUTION	SECNO	4.970	PROPILES	m	CRITICAL DE	SPTH ASS	COMED		
CAUTION	SECNO	4.970	PROFILE=	m	MINIMUM SPE	CIPIC E	CHERGY		
CAUTION	SECNO=	4.970	PROFILE=	-7	CRITICAL DE	SPTH ASS	CIMED		
CAUTION	SECNO	4.970	PROFILE=	*	BAS WOWININ	SCIFIC F	DIERCY		
WARWING	SECNO	5.000	PROFILE=	-1	CONVEYANCE	CHANGE	SUTSTOR	ACCEPTABLE	RANGE
WARNING	SECNO=	5.000	PROFILE=	~	CONVEYANCE	CHUNGE	BUISTUO	ACCEPTABLE	RANGE
WARNING	SECNO=	5.000	PROFILE=	m	CONVEYANCE	CHANGE	SUTSIDE	ACCEPTABLE	RANGE
WARNING	SECNO	5.000	PROFILEs	*	CONVEYANCE	CHANGE	BUISTUO	ACCEPTABLE	RANGE
WARNING	SECNO=	5.320	PROPILE=	-	CONVEYANCE	CHANGE	SUISTUO	ACCEPTABLE	RANGE
WARNING	SECNO	5.320	PROFILE=	~	CONVEYANCE	CHANCE	301STUO	ACCEPTABLE	RANGE
WARNING	SECNO=	5.320	PROPILE=	m	CONVEYANCE	CHANGE	SUISTUO	ACCEPTABLE	RANGE
CAUTION	SECNO=	5.320	PROFILE=	-	CRITICAL DE	SPTH ASS	CIMED		
CAUTION	SECNO	5.320	PROFILE=	-7	MINING SPE	CIFIC F	CARROY		
WARNING	SECNO	5.380	PROFILE=	~	CONVEYANCE	CHANGE	OUTSIDE	ACCEPTABLE	RANGE
WARNING	SECNO	5.380	PROFILE=	-	CONVEYANCE	CHANGE	OUTSIDE	ACCEPTABLE	RANGE
WARNING	SECNO.	5.430	PROFILE=	-	CONVEYANCE	CHANGE	OUTSIDE	ACCEPTABLE	RANGE
WARNING	SECNOs	5.430	PROFILE=	~	CONVEYANCE	CHANGE	OUTSIDE	ACCEPTABLE	RANGE
WARNING	SECNO=	5.430	PROFILES	-	CONVEYANCE	CHANGE	OUTSIDE	ACCEPTABLE	RANGE
		24261		1			La santa		

Run Date: 18NOV97 Run Time: 13:50:57 HMVersion: 6.52 Data File: SCAPC875.DAT

NG SE	=ONO=	5.430	PROFILE=	4	CONVEYANCE	CHANGE	OUTSIDE	ACCEPTABLE	RANGE
	CNO#	5.550	PROFILES		CONVEYANCE	CHANGE	301STUO	ACCEPTABLE	RANGE
25		6 610	PROPERS	-	CONTRVANCE	aurenu	NINCTOR	ACCEDENSIS	arvive o
s 25		5.630	PROFILE	-	CONTRANCE	CHANGE	OUTSTOP	ACCEPTABLE	actives
1.25	CNO.	5.630	PROFILES	m	CONVEYANCE	CHANGE	CUTSTD8	ACCEPTABLE	RANGE
10	CNO.	5.630	PROFILE=	- 19	CONVEYANCE	CHANGE	0075108	ACCEPTABLE	RANGE
65	=010	5.890	PROFILE#	-1	CONVEYANCE	CHANGE	OUTSIDE	ACCEPTABLE	RANGE
75.7	=040	5.900	PROFILE=	-	CONVEYANCE	CHANGE	3015100	ACCEPTABLE	RANGE
6	*0W	2.900	PROFILES	N	CONVEYANCE	CHANGE	OUTSIDE	ACCEPTABLE	RANGE
6	CNO.	5.960	PROPILES	-	WSEL BASED	ON X5 (CARD		
25	C2NO=	5.960	PROFILE=	~	WSEL BASED	ON X5 O	CARD		
65	-010-	5.960	PROPILE=	•	WSEL BASED	ON XS O	CARD		
63	-MOn	5.960	PROFILE=	4	WSEL BASED	ON X5 O	CARD		
6	=ONO=	5.990	PROFILE=	~	CONVEYANCE	CHANGE	OUTSIDE	ACCEPTABLE	RUNCE
64	CNO.	5.990	PROFILE*	m	CONVEYANCE	CHUNNEE	SUTSTOR	ACCEPTABLE	RANGE
6	=ONC	5.990	PROFILE*	-	CONVEYANCE	CHANGE	3012100	ACCEPTABLE	RANGE
64	NO=	6.020	PROPILE=	-1	CONVEYANCE	CHANGE	3012100	ACCEPTABLE	RANGE
6	=040	6.090	PROFILES	-	CONVEYANCE	CHANGE	301STU0	ACCEPTABLE	RANGE
2		6.030	PROFILES.		CONVETANCE	CHANGE	OUTSIDE	ACCEPTABLE	RANGE
5 65	100	6.090	PROPILE=	••	CONVEYANCE	CHUNGE	OUTSIDE OUTSIDE	ACCEPTABLE	RANGE
- 54	=040	6.115	PROFILE=	-1	CONVEYANCE	CHANGE	OUTSIDE	ACCEPTABLE	RANGE
ä	=010	6.115	PROFILE=	~	CONVEYANCE	CHANGE	SOLSTOS	ACCEPTABLE	RANGE
a	=ONC	6.115	PROPILE*	~	CONVEYANCE	CHANGE	301STUO	ACCEPTABLE	RANGE
65	=ONC	6.115	PROFILE=	47	CONVEYANCE	CHANGE	OUTSIDE	ACCEPTABLE	RANGE
- 23	=ONC	6.150	PROFILE=	**	CONVEYNNCE	CHANGE	OUTSIDE	ACCEPTABLE	RANGE
22	"NO"	6.150	PROPILE*	~	CONVEYANCE	CHANGE	301STUO	ACCEPTABLE	RUNGE
2	-3NO=	6.150	PROFILE=	•	CONVEYANCE	CHANGE	SOLUTION	ACCEPTABLE	RANGE
6		6.150	PROFILE=	4	CONVEYANCE	CHANCE	SUISTUS	ACCEPTABLE	RANGE
122	NON	6.300	PROPILE=	-	CONVEYANCE	CHANGE	SUTSIDE	ACCEPTABLE	RANGE
122	=0NC	6.300	PROFIL&	~	CONVEYANCE	CHANGE	SUISTUO	ACCEPTABLE	RANGE
3	=ONC	6.300	PROPILE*	0	CONVEYANCE	CHUNGE	SUISIDE	ACCEPTABLE	RANGE
25	NOn	6.300	PROFILE=		CONVEYANCE	CHANGE	BOISTUO	ACCEPTABLE	RANGE
25	=040	6.320	PROFILE=	~	CONVEYANCE	CHANGE	301STU0	ACCEPTABLE	RANGE
22	=ONC	6.320	PROPILE=	m	CONVEYANCE	CHANNE	OUTSIDE	ACCEPTABLE	RANGE
25	-MOH	6.320	PROFILE=	4	CONVEYANCE	CHANGE	301STUO	ACCEPTABLE	RANGE
22 2	=045	6.500	PROFILE=	-	CONVEYANCE	CHANGE	BUISTUO	ACCEPTABLE	RANGE
5	-201	0000.0	FXUT ILES	4	CONVETANCE	CHANNER	CUTSIDE	ACCEPTABLE	KANGE

Run I	Date:	18NOV97	Run Time:	13:5	50:57	HMV	ersion:	6.52	Data	File:	SCAPC875.DAT
	000010					-	-		10000		
WARNING	SECNO	* 0.50	0 PROFILE	- 3	CONV	ETANCE	CHANGE	OUTSIDE	ACCER	TABLE	RANGE
WARNING	SECNO	.50	0 PROFILE	- 4	CONV	EYANCE	CHANGE	OUTSIDE	ACCEN	TABLE	RANGE
WARNING	SECNO	. 6.75	ALTRONY O	. 1	CONT	EYANCE	CHANGE	OUTSIDE	ACCER	TABLE	RANGE
WARNING	SECNO	. 6.75	0 PROPILE	- 2	CONT	EVANCE.	CHANCE	OUTSIDE	ACCER	TABLE	RANCE
WARNING	SECNO	. 6.75	O PROFILE	- 3	CONT	EVANCE	CHANCE	OUTSIDE	ACCES	TABLE	RANCE
WARNING	SPCMO	6 75	0 PROFILE		CONT	EVANCE	CHANGE	OUTSIDE	ACCER	TABLE	RANCE
manarativa	Section		V PROFADE		cont	birares.	crowron	0010100	nyent	1110100	194194
WARNING	SECNO	= 6.78	0 PROFILE	- 1	CONV	EYANCE	CHANGE	OUTSIDE	ACCER	TABLE	RANGE
WARNING	SECNO	= 7.43	0 PROFILE	• 2	CONV	EYANCE	CHANGE	OUTSIDE	ACCES	TABLE	RANGE
WARNING	SECNO	. 7.43	0 PROFILE	= 3	CONV	EYANCE	CHANGE	OUTSIDE	ACCES	TABLE	RANCE
WARNING	SECNO	. 7.43	0 PROFILE	- 4	CONV	EYANCE	CHANGE	OUTSIDE	ACCER	TABLE	RANCE
WARNING	SECNO	= 7.87	O PROFILE	- 1	CONV	EYANCE	CHANGE	OUTSIDE	ACCES	TABLE	RANGE
WARNING	SECNO	= 7.87	0 PROFILE	* 2	CONV	EYANCE	CHANGE	OUTSIDE	ACCES	TABLE	RANCE
WARNING	SECNO	. 7.87	O PROFILE	= 3	CONV	EYANCE	CHANGE	OUTSIDE	ACCEN	TABLE	RANCE
WARNING	SECNO	= 7.87	0 PROFILE	s 4	CONV	EYANCE	CHANGE	OUTSIDE	ACCES	TABLE	RANCE
	-						-				
WARNING	SECNO		0 PROFILE	- 1	CONV	ETANCE	CHANGE	OUTSIDE	ACCEN	TABLE	RANGE
WARNING	SECNO	* 8.58	0 PROFILE	* 2	CONV	ETANCE	CHANGE	OUTSIDE	ACCEI	TABLE	RANGE
WARNING	SECNO	# 8.58	0 PROFILE	* 3	CONV	EYANCE	CHANGE	OUTSIDE	ACCEI	TABLE	RANGE
WARNING	SECNO	8.58	O PROFILE	* 4	CONV	EYANCE	CHANGE	OUTSIDE	ACCR	TABLE	RANGE
WARNING	SECNO	. 8.76	0 PROFILE	- 1	CONV	EYANCE	CHANGE	OUTSIDE	ACCER	TABLE	RANGE
WARNING	SECNO	. 8.76	0 PROFILE	· 2	CONV	EYANCE	CHANGE	OUTSIDE	ACCEL	TABLE	RANCE
WARNING	SECNO	. 8.76	0 PROFILE	- 3	CONV	EYANCE	CHANGE	OUTSIDE	ACCER	TABLE	RANGE
WARNING	SECNO	. 8.76	O PROFILE	* 4	CONV	EYANCE	CHANGE	OUTSIDE	ACCER	TABLE	RANGE
WARNING	SECNO	* 8.78	0 PROFILE	- 1	CONV	EYANCE	CHANGE	OUTSIDE	ACCER	TABLE	RANGE
WARNING	SECNO	# 8.78	0 PROFILE	= 2	CONV	EYANCE	CHANGE	OUTSIDE	ACCES	TABLE	RANCE
WARNING	SECNO	≈ 8.78	0 PROFILE	= 3	CONV	EYANCE	CHANGE	OUTSIDE	ACCEI	TABLE	RANGE
WARNING	SECNO	= 8.78	0 PROFILE	* 4	CONV	EYANCE	CHANGE	OUTSIDE	ACCER	TABLE	RANGE
WARNING	SECNO	. 9.23	O PROFILE	- 1	CONV	EYANCE	CHANGE	OUTSIDE	ACCES	TABLE	RANGE
WARNING	SECNO	9.23	O PROFILE	= 2	CONV	EYANCE	CHANGE	OUTSIDE	ACCEL	TABLE	RANCE
WARNING	SECNO	9.23	0 PROFILE	- 3	CONV	EYANCE	CHANGE	OUTSIDE	ACCES	TABLE	RANGE
MARNING	SECTIO.	9 23	0 PROPILE		CONT	EVANCE	CHANCE	OUTSIDE	ACCEL	TABLE	RANCE
	oberro					unarou	construction				
WARNING	SECNO	· 9.50	0 PROFILE	* 4	CONV	EYANCE	CHANGE	OUTSIDE	ACCEI	TABLE	RANCE
CAUTION	SECNO	= 9.60	O PROFILE	* 1	CRIT	ICAL DI	EPTH AS	SUMED			
CAUTION	SECNO	. 9.60	O PROFILE	. 1	MINI	MUM SPI	ECIPIC I	ENERGY			
WARNING	SECNO	# 9.73	0 PROFILE	# 3	CONV	EYANCE	CHANGE	OUTSIDE	ACCEI	TABLE	RANGE
CAUTION	SECNO	* 9.73	0 PROFILE	- 4	CRIT	ICAL D	EPTH AS	SUMED	Protector	a variante	
CAUTION	SECNO	9.73	0 PROFILE	* 4	20 1	RIALS J	TTEMPT	ED TO BA	LANCE	WSEL	
WARNING	SECNO	. 9.74	0 PROFILE	= 2	CONV	EYANCE	CHANGE	OUTSIDE	ACCER	TABLE	RANGE
MADNING	0000		O PROPTER		COMPU	EVANCE	CHANCE	OPTOTOP	ACCER	TARLE	RANCE
ANALING.	Jurio	2.00	. FROFADS		CONT	STRATES	STRATOR	5010105	112001	mout	A W RETURN

Run Date: 18NOV97 Run Time: 13:50:57 MMVersion: 6.52 Data File: SCAPC875.DAT

RANGE		RANGE				RANGE	RANGE	RANCE
ACCEPTABLE		ACCEPTABLE	KOR		KOR	ACCEPTABLE	ACCEPTABLE	ACCEPTABLE
OUTSIDE SUMED ENERGY	SUMED	SUMED	ENERGY ITION ERF	SUMED	ITION ERF	OUTSIDE	OUTSIDE	OUTSIDE
CHANGE IPTH AS	IPTH AS	CHANGE EPTH AS	CIPIC DEFIN	SPTH AS	DEFIN	CHANGE	CHANGE	CHANCE
CONVEYANCE CRITICAL DE MINIMUM SPE	CRITICAL DE MINIMUM SPE	CONVEYANCE CRITICAL DE	MINIMUM SPI BRIDGE DECH	CRITICAL DE	BRIDGE DECK	CONVEYANCE	CONVEYANCE	CONVEYANCE
~~~		~	~ ~	44		-		*
PROFILE= PROFILE= PROFILE=	PROFILE=	PROFILE*	PROFILE*	PROFILE=	PROPILE=	PROFILE=	PROPILES	PROFILE.
9.930 9.930	9.930	9.990	9.990	9.990	9.990	10.000	10.000	10.000
SECNO= SECNO= SECNO=	SECNO= SECNO=	SECNO= SECNO=	SECNO=	SECNO=	SECNO.	SECNO=	SECNO=	SECNO=
WARNING CAUTION	CAUTION	WARNING	CAUTION	CAUTION	CAUTION	WARNING	WARNING	WARNING

Appendix F STORM DRAINAGE SYSTEM INVENTORY AND MAINTENANCE BUDGET



Scappoose Storm Drain System Master Plan

	_									Ci	ty of S	cappo	ose								_			_						
				_					Ma	intenance l	nvento	ry for S	torm	Drain	age															
Location/Description	Date	Catch	Std	SD	Area	Man-	PC	Dry-	De	tention	Pipe							Line	al Fee	t of Pip	e									
	14112	Basins	Inlet	s COs	Drains	Holes	MHs	Wells	Pond	Tank/Pipe	Outfall	TOTAL	8	10	12	14	15	18	21	24	27	30	36	42	48	54	60	72	84	96
RELATION AND A	(REDEN	131, 1965	1.75		3000	1922	115	1	and the second	1000	CALCON	Sal Stra	272	No. March	The second	1.210.1	1000	2018	15.00	121.00		1	No.	200	1	100	1.0	20	000	10
Holiday Orchard	Nov-96	2									1	193		84	109														_	
Leslie Acres	Jul-81	18.19	2		0.01	1	1.1.1.1				1	330	100		330				-											
Creekview Place Ext	Oct-89	2								-	1	202	30		172										-					
Sunrise Estates No.2		2						1				40		40																
Green Meadows	Apr-78	11				3	1000	2			1	945			945															
Mobile Garden	Sep-82	2	1			3	1.000				1	656			451			205												
Dons Subdivision	Apr-73	17			PRIN	ATE		8				390	114	276																
Springlake Park	Feb-86	6										392	392																	
Westcliff	Feb-73	8			1.1.1	3	1.00	100				1,242			1,242		-		1.0		1.0				10.1					
Bella Vista	Apr-73	5			-							607			607								1					-		
Steinke's Addition	Apr-78	3				1		100				380		60	320		-		1											-
Scappoose Heights No.	May-96	9		-				1.1.1	1	-	1	484		424	60		-													
Keys Landing	Jul-91	4						1			1	340	32	238			-	70	-				1						1	
Seely Lane	Mar-96			1		1	0.000	- 120-	1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		1,113		345	595		173		-											
Crown Park	Dec-96	4		PR	VOTT	10	-	2	1			76			76	1											-			
Sixth Street	Sep-95	8		-		5		-			1	1,194	-		213	-	-	981	-		-		-							
Sunset Estates	Oct-93	4		1				3	1	-		48		48		1			-		1		1.1		-		-			
Kingsbrook LID	Jul-80	5		1		2					1	841		116		1			236	489			-				-			
Heller Orchards	Jan-97	1	-	1		1				1	1	130	-	-	130	-			-		-				-	-	-	-		
Meersburg	- American	12		1		12		1.000		2		1,208			805	1	95	110			-		20				-	178		-
Rolling Hills	Oct-95	2		-		4		1111				707		72	635	1			1	-	1						-			
Willows Park	Aug.95	2	1	-		1	-	-	1			228				228			-	-	1				-		-	-		_
Fred Meyer On-Site		18	8	-	-	14			1	1		2.604	202		565		480	328		518			-		-		-	-	-	511
Scannovee Retail Center	Ano.96	4	2	1-		7				1		815		-	481	-		50	-		-		12			-	-	-	-	292
Fred Meyer Off.Site	Jul.95	16	-	-	2	8	-		1			1 164		48	223	-	893		-	1	-				-	-	-	-		
Maxdouchrook	100.95	16	-		-	10			-	1	1	1862		-	985	-	010	277	-	-	-		220		-		280	-		
US Hury 30 Improvement	Ana.96	3	-	-		10	-	1000	-			0		1	700	-	-			-					-			-		
Haron Mandour	Aug. 97	16	1	1		12	2	-	1		2	1 976			806	-		635	-	285	-		-		-	-	-	-	-	-
Company Cr. Cir	Ang.97	10				14	-		1			386			000	-		0.00	286	400	-		-	++	-		-+	-	-	-
Marfall.	Ap1.70	0	-	-	-	1	-	-				435	-		111	-	124	-		-			400		-	-	-	-	-	-
Casinglaba Dash #2	04.93	12		110	-		-	-	-		6	003	125	210	528	-	144	-	-	-	-		400	+	-+	++	-+	-	-	-
Springlake Park #2	Nov 05	12	-	14		14	-				0	2760	145	340	1 579	-	1 025	18	-	178	-	-	-		-+	++	-	-	-	-
Seven Oaks (1664)	N07-75	30	-	-		2					-	4160			1,317	-	1,000	10	-	140	-			$\vdash$	-+	-	-	-		-
Old Doubles of Doud 1 ID	Jun-98	22	-	+		15	-		-			1 006			1 722	-	273	-	-		-	-	-	-	$\rightarrow$	-	$\rightarrow$	-		-
Columbia Auseus	Apr-97	14	-	-		15	-	2	-			1,034		-	260	-	774	-	-	-	-	-	-	++	+	++	$\rightarrow$	-		-
Columbia Avenue	1.1.06	2		-	-	-		4				105		105	400	-	114	-	-		-				+	-	-	-		-
Civic Center	101-70	2	-	-	-	-		-	-			195		195	-	-		-	-		-	-	-	-	-+	-+	-	-	-	-
Snyder Court	Rug-96	10	-	-	-	12	-	-	-			2 105			1 051	-	244	-	-		-	-		++	-		-			-
Kingsbrook III	1-00-95	18	-	-		12	-	-	-	-	-	2,195	250	-	1,001	-	344	-	-	-	-		-		-		-	-	-	-
Contrast Street	Jul-92	0	-	-	-	3						435	200			-		-	-		-	-		-	+	-	-	-		-
Sunsel Estates Drainage	NOV-97		-	-	-	-		202	-			6			-	-	-	-	-	-	-	-		+	-+	-	$\rightarrow$	-		-
Other Existing System			-	-		-	-	20	-	-		0		-		-	-		-	-	-			++	+	-	$\rightarrow$	-		-
N.C. Jaw				-	-	-		1				0				1		-	-	-	-				-	-	-	_		-
	COLUMN AND	Cardination of	and the second	-	Carto par	1000	20000	and the	100000	Contraction of the	200.00	Martin Co.	S.A.S.P.		-	1		-		Silvin a	100	100	192100			(Farty	243.04	1000	-Current	10.3
TOTAL		305	15	15	2	142	2	40	3	7	21	30,936	1,153	2,286	16,248	228	4,191	2,674	522	1,620	0	0	652	0	0	0	350	178	0	803

## City of Scappoose

Stormwater Maintenance

Storm Drain System Maintenance Worksheet

[* Key Water Quality Elements ]

Item	Maintenance	Units to be	Recommended	Performance	Labor Requirements	Annual Man-Days					Annual
No.	Category	Maintained	Frequency	Standard	Maint.	Maint.	Worker:	Equip. Cost	Cost	% of	F.T.E.
					Worker Other	Worker Other	\$185/day	(City Rate)	Totals	Program	Reqmt.
	Clean Catch Basins w/Sumns	250 FA	200 078	15 FA/DA	2	67	612 113	\$2.500	\$14 833	36.6%	0.1
2 .	Manhole Cleaning	100 EA	1.00 /YR	15 EA/DA	2	13	\$2,467	\$500	\$2,967	7.3%	0.1
3 .	Dry Well Cleaning	50 EA	1.00 /YR	15 EA/DA	2	7	\$1,233	\$250	\$1,483	3.7%	0.0
4 .	Clean Detention Basins e	10 EA	2.00 /YR	2 EA/DA	2	20	\$3,700	\$450	\$4,150	10.2%	0.1
5	Roadside Ditches - Veg. e	0 LF	1.00 /YR	2,640 LF/DA	2	0	\$0	\$0	\$0	0.0%	0.0
6	Roadside Ditches - Reshape e	0 LF	0.33 /YR	1,320 LF/DA	2	0	\$0	50	\$0	0.0%	0.0
7	Open Channels - Veg. e	0 LF	2.00 /YR	2,640 LF/DA	2	0	\$0	\$0	50	0.0%	0.0
8	Open Channels - Reshape e	0 LF	1.00 /YR	1,500 LF/DA	2	0	\$0	\$0	50	0.0%	0.0
9	Clean/Flush Culverts	2,500 LF	1.00 /YR	500 LF/DA	2	10	\$1,850	\$375	\$2,225	5.5%	0.0
10	Clean Pipe	25,000 LF	0.50 /YR	1,500 LF/DA	2	17	\$3,083	\$625	\$3,708	9.1%	0.1
11	Inspection with T.V.	25,000 LF	0.50 /YR	2,500 LF/DA	2	10	\$1,850	\$500	\$2,350	5.8%	0.0
12	Rehab Catch Basin e	10 EA	1.00 /YR	2 EA/DA	2	10	\$1,850	\$300	\$2,150	5.3%	0.0
13	Install Sedimentation Sumps	10 EA	1.00 /YR	1 EA/DA	2	20	\$3,700	\$600	\$4,300	10.6%	0.1
14 •	Street Sweeping	0 MI	12.00 /YR	10 MI/DA	1	0	\$0	\$0	\$0	0.0%	0.0
15	Non-Scheduled Maintenance	(+	7.5% of Item	s 1 · 13)		13	\$2,405	\$0	\$2,405	5.9%	0.1
	SUB-TOTAL: ALL M	AINTENANC	E CATEGOR	1ES >>>>>		186	\$34,472	\$6,100	\$40,572	100.0%	0.8
	OTHER ACTIVITIES: Administration/Supervision		10.0%		15121		1227		\$4,057	1.5	
1	Emergency Response		5.0%						\$2,029		
	Hazard Mitigation		5.0%						\$2,029		
1	TOTAL: ALL MAINTENA	NCE CATEG	ORIES >>>>	******	*****				\$48,686		
-											
-	TOTAL STORMWATER N	AINTENAN	CE REVENU	E NEEDS>>>>	******	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			\$48,686		

e = preliminary estimate

## Appendix G METRO TITLE 3 MODEL ORDINANCE



Scappoose Storm Drain System Master Plan

# Title 3 Model Ordinance

anizabarai

Section II. Consistency

Growth Management Committee May 28, 1998



METRO

EXHIBIT C

### Table of Contents

Introduction	
Section 1. Intent	
Section 2. Applicability	
Section 3. Administration	
Map as Reference	
Field Verified Map	
Periodic Review	
Section 4. Water Quality Resource Areas	
Uses Permitted Outright	
Uses under Prescribed Conditions	
Conditional Uses	
Prohibited Lises 13	
Application Requirements 13	
Development Standarda 15	
Development Standards	
Section 5. Flood Management	
Uses Permitted Outright	
Conditional Uses 21	
Prohibited Lises 22	
Development Standarda 22	
Development Standards	
Section 6. Subdivision and Partitions	
Section 7. Density Transfers	
Section 8. Erosion Prevention and Sediment Control	
Section 9. Variances	
Hardship Variance	
Buildable Lot Variance 28	
Variance Conditions	
Section 10. Map Administration	
Section 11. Consistency	
Section 12. Warning and Disclaimer of Liability	
Section 13. Severability	
Section 14. Enforcement	

Tables: Table 1 Vegetated Corridor Widths	a film an an ann gu an M bool i a	Matte Water-Quality an
Table 2. Water Quality Resource A	rea Requirements	
Appendix	equired by Tens 3, Section 6 o	

topproyed by the Mirroy Council that a rathe cost by a pity as openies to contain with the performance duridies's for Tate 3: Water Quality, Place Mangament, and Place and Wildlife Consumation destribut in the Marra Union Consult Merupes and Etheratorial Plane Title 3 describes specific performance startingle and practices for three start Managemistrat Mortel Ord-stance and map for use by Incel (raded)ctions to somely with Tate 3. This model optimizers fulfills the Title 3 requirement. It is also exclusion i with

purpose of This 3 is to project fish and weights furnish. Subdivisio has been than 5 restautors, which hecheds fight and witchile hebris a protection, will be addressed by a Materia interpretation of states of this sets 11 conduct. This I will apply to developmental od specerostelegos visitos. Je montás especeros teneros teneros en Jestelegos em principal imposed on arteal contained within or outside of the Writer Quality Reported Artea and · Phood Management Area Overlay Zones addressed in this Media Oulinated

The Matro Future Naive, Generatorice Matter Plan, Regional Distort, Grands Gould and Objectives (RUGOOs), and Regional Francework Plan Identify young quality protection.

provisions for a portion of the issues (dentified in Table 3: protecting of its region's Bolighteline, water quality and reduction of Bood herards and the jetplaced material menion control practices this uphout the Popland metropolites regions. Oncer justice

#### EXHIBIT C

#### Metro Water Quality and Flood Management Area Model Ordinance

#### Introduction

ITC

Attached is the model ordinance required by Title 3, Section 6 of Metro's Urban Growth Management Functional Plan.

The purpose of this model ordinance is to provide a specific example of provisions approved by the Metro Council that can be used by a city or county to comply with the performance standards for *Title 3: Water Quality, Flood Management, and Fish and Wildlife Conservation* described in the *Metro Urban Growth Management Functional Plan.* Title 3 describes specific performance standards and practices for floodplain and water quality protection. It also requires that Metro adopt a Water Quality and Flood Management Model Ordinance and map for use by local jurisdictions to comply with Title 3. This model ordinance fulfills the Title 3 requirement. It is also consistent with Metro's policies in the 1995 Future Vision Report, in the 1995 Regional Urban Growth Goals and Objectives (RUGGOs) in the 1992 Greenspaces Master Plan, and in the 1997 Regional Framework Plan.

The purpose of Title 3 is to protect water quality and floodplain areas. Floodplains protect the region's health and public safety by reducing flood and landslide hazards and pollution of the region's waterways. This Model Ordinance and Map address that purpose. Another purpose of Title 3 is to protect fish and wildlife habitat. Statewide land use Goal 5 measures, which include fish and wildlife habitat protection, will be addressed in a Metro study that will be conducted within the next 18 months. Title 3 will apply to development in Fish and Wildlife Habitat Conservation Areas when Metro's Section 5 analysis and mapping are completed. As additional issues are addressed, further regulations may be imposed on areas contained within or outside of the Water Quality Resource Area and Flood Management Area Overlay Zones addressed in this Model Ordinance.

The Metro Future Vision, Greenspaces Master Plan, Regional Urban Growth Goals and Objectives (RUGGOs), and Regional Framework Plan identify water quality protection, floodplain management, fish and wildlife habitat protection, development of recreational trails, acquisition of open space and maintenance of biodiversity as critical elements of maintaining healthy, livable communities.

This Model Ordinance, however, only provides specific examples of local ordinance provisions for a portion of the issues identified in Title 3: protection of the region's floodplains, water quality and reduction of flood hazards and the implementation of erosion control practices throughout the Portland metropolitan region. Other issues including fish and wildlife habitat, watershed-wide stormwater management, steep slopes, landslide hazards and biodiversity are addressed in the December 1997 Metro Regional Framework Plan.

The approach in Sections 2, 3 and 4 of Title 3 is to implement Oregon Statewide Goal 6 and Goal 7. Goal 6: Air, Water and Land Resources Quality and Goal 7: Areas Subject to Natural Disasters and Hazards are addressed by protecting streams, rivers, wetlands, and areas adjacent to streams and floodplains within the Water Quality Resource and Flood Management Areas.

Cities and counties are required to amend their plans and implementing ordinances, if necessary, to ensure that they comply with Title 3 in one of the following ways:

Adopt the applicable provisions of the Metro Water Quality and Flood Management Area model ordinance and map, which is entitled the Metro Water Quality and Flood Management Area Map.

Local jurisdictions have two options with regard to their adoption of code language and a map (either the Metro Water Quality and Flood Management Area Map or a city or county field verified map that substantially complies with the Metro map):

The code language that describes the affected area prevails and the map is a reference; or the field verified map prevails and the descriptive code language is used to correct map errors when they are discovered and for delineating and marking the overlay zone boundary in the field. This map must be reviewed concurrently with local periodic review.

The advantage of the first approach above is that the final boundary is determined at the time of the development application, based on a detailed survey of the site. If a large scale, precise boundary can be mapped, the official map should prevail. This method allows for a more efficient permit process and more certainty for the property owner. In this case, the language is used to correct mapping errors when they are discovered. A map, however, should only be used if it has a level of detail and clarity equal to or better than 1'' = 300 feet, and has been field-checked for accuracy.

Adopt plans and implementing ordinances and maps that substantially comply with the performance standards of Title 3.

Any combination of the above that substantially complies with all performance standards in Title 3, Section 4 (see Title 3, Section 3).

The purpose of the map adopted by Metro is to provide the performance standard for the location of Water Quality Resource and Flood Management Areas. Therefore, the map is the basis for evaluation of substantial compliance of local maps for those jurisdictions that choose to develop their own field verified map of Water Quality Resource and Flood Management Areas. "Substantial compliance" means that the city and county

comprehensive plans and implementing ordinances, on the whole, conform with the purposes of the performance standards in the functional plan and any failure to meet individual performance standard requirements is technical or minor in nature.

The approach in Neutrons 2, 2 and 4 of Talle 3 is to Impliment Oregon Statewidg Uptal 6 led Goal 7. Goal & Alts Water and Lena Nationski Quality and Goal 7. Arean Subject to Vetarial Pleasant and Hazawin are addressed by privating gradetty, dvice, wellagds, and reast addressed to metaric and finadplains within the Witer Orable Metarics and Morel Management Arises.

Cities and complete are expliced to protect their pieces and emplorizeding or deleterized (1) and entering or deleterized (2) and entering the following deletering to be entering to be an entering to the Table State and the St

Local journel-theory have two operates with respect to their aduption of code leaveney who in more (efficient the Merrer Water (frainly, ALA Frence Mangemente Area May as a coherer confield, see that one that referst initially commons with the Merro (1993).

The code (anguage that describes the affinish and area provate and we only the transmission the field verified may provelly and the binectpilve code interaction is used to down transences when they are discovered and for destantions and modeling the commutation behavior they in the field. This must here trans here twice of concurrence were beauty and local provide the con-

The advicance of the first approach above is that the fault broaden) is there if a large scale binst of the development application. Instead on a detailed survey of the size, if a large scale more efficient permit process and more sectionity for the property owner. In the matched discuss the largener is used to control matering when velocit they are discovered. A map, broadener should only be used if it has a level of deals and childy equal to or tester then it with first, and has been from first and of action when they are discovered. A map, broadener first, and has been first that a level of deals and childy equal to or tester that it with the second only be used if it has a level of deals and childy equal to or tester the it is the size.

Adopt phase and implementating ordinations and maps that submarking country with the per lateration standards of This 3.

Any combination of the show that subsetual (ivy could be write all replaced as the second sec

The propose of the map adopted by Metric in to provide the proteinance planeters with million bentime of Water Quality Planeters and Planet Metric present Arabic Theorem in the million of the million of the term of term of the term of the term of the term of term o

#### Water Quality and Flood Management Area Model Ordinance

#### Section 1. Intent

The purpose of this ordinance is to comply with Sections 1-4 of Title 3 of Metro's Urban Growth Management Functional Plan.

- A. To protect and improve water quality, to support the designated beneficial water uses and to protect the functions and values of existing and newly established Water Quality Resource Areas, which include, but are not limited to:
  - Provide a vegetated corridor to separate Protected Water Features from development;
  - Maintain or reduce stream temperatures;
  - Maintain natural stream corridors;
  - Minimize erosion, nutrient and pollutant loading into water;
  - Provide filtration, infiltration and natural water purification;
  - Stabilize slopes to prevent landslides contributing to sedimentation of water features.
- B. To protect Flood Management Areas, which provide the following functions:
  - Protect life and property from dangers associated with flooding;
  - Flood storage, reduction of flood velocities, reduction of flood peak flows and reduction of wind and wave impacts;
    - Maintain water quality by reducing and sorting sediment loads, processing chemical and organic wastes and reducing nutrients;
    - Recharge, store and discharge groundwater;
    - Provide plant and animal habitat, and support riparian ecosystems.
- C. To establish two overlay zones for Water Quality Resource Areas and Flood Management Areas, which operate contemporaneously with the base zone and implement the performance standards of Title 3 of the Urban Growth Management Functional Plan.

#### Section 2. Applicability

- A. This ordinance applies to:
  - Development in the Water Quality Resource Area and Flood Management Area Overlay Zones. The overlay zones restrict the uses that are allowed in the base zone by right, with limitations, or as conditional uses.
  - Development that may cause visible or measurable erosion on any property within the Metro Boundary.
- B. This ordinance does not apply to work necessary to protect, repair, maintain, or replace existing structures, utility facilities, roadways, driveways, accessory uses and exterior improvements in response to emergencies provided that after the emergency has passed, adverse impacts are mitigated in accordance with Table 2 standards for restoring marginal existing vegetated corridors.

#### Section 3. Administration

A. Title 3 of the Urban Growth Management Functional Plan allows for two methods for applying the provisions of this ordinance to applications to allow development in the Water Quality Resource Areas and Flood Management Areas Overlay Zones. The purpose of this section is to show how this ordinance is applied under each method.

Alternative 1 requires the text of this ordinance, including definitions, to describe and regulate the protected areas shown on the city/county Water Quality and Flood Management Areas map using the map as a reference.

Alternative 2 requires the city/county Water Quality and Flood Management Areas map to describe and regulate the areas shown on the map after the city or county has field verified the protected areas on Metro's map and identified or delineated those areas, and other Protected Water Features, Water Quality Resource Areas and Flood Management Areas the city/county may identify, on the city/county map.

- B. Map as Reference (Alternative 1)
  - The text provisions of this ordinance shall be used to determine whether applications to allow development in the Water Quality Resource Area and Flood Management Area Overlay Zones are subject to the requirements of this ordinance.
  - The Water Quality and Flood Management Areas map shall be a reference for identifying areas subject to the Water Quality Resource Area or Flood Management Area Overlay Zones.

- Applicants are required to provide the city/county with a delineation of the Water Quality Resource Areas and Flood Management Areas on the subject property as part of their application. An application shall not be complete until this delineation is submitted to the city/county.
- Wetlands which meet the criteria in Section 10.D.2 shall be subject to the standards which apply to the Water Quality Resource Areas and Flood Management Areas Overlay Zones.
- C. Field Verified Map (Alternative 2)
  - A field verified Water Quality and Flood Management Areas map shall be used to determine whether applications to allow development in the Water Quality Resource Areas and Flood Management Areas Overlay Zones are subject to the requirements of this ordinance.
  - The city/county shall identify and delineate the areas shown on the Metro Water Quality and Flood Management Areas map by:
    - a. Conducting a site visit, with the owner's permission, of the property where a Water Quality Resource Area or Flood Management Area is shown on Metro's map to delineate the resource area; and
    - Gathering and reviewing other information such as wetland inventory maps, aerial photographs and other significant evidence submitted by citizens; and
    - c. Mapping the specific boundaries of the Water Quality Resource Areas and Flood Management Areas on the city/county Water Quality and Flood Management Areas map.
  - 3. The city/county Water Quality and Flood Management Areas map shall be amended to add wetlands which meet the requirements of Section 10.D.2 and to correct the locations of Protected Water Features, Water Quality Resource Areas and Flood Management Areas in accordance with Section 10.B.
- D. The city/county shall review the Water Quality and Flood Management Areas Map during periodic review as required by ORS 197.633 (1997).

#### Section 4. Water Quality Resource Areas

- A. The purpose of this section is to protect and improve the beneficial water uses and functions and values of Water Quality Resource Areas.
- B. This ordinance establishes a Water Quality Resource Area Overlay Zone, which is delineated on the Water Quality and Flood Management Area map attached and incorporated by reference as part of this ordinance.

(Note: If it has been determined during local public review that the code language is to prevail, adoption of these standards as written is appropriate. If a map is to prevail, this section should be used for map correction and interpretation, and the definition of areas should be by adopting an official map by reference.)

C. The Water Quality Resource Area is the vegetated corridor and the Protected Water Feature. The width of the vegetated corridor is specified in the Table One. At least three slope measurements along the water feature, at no more than 100-foot increments, shall be made for each property for which development is proposed. Depending on the width of the property, the width of the vegetated corridor will vary.

		UIC I	
Protected Water Feature Type (see definitions)	Slope Adjacent to Protected Water Feature	Starting Point for Measurements from Water Feature	Width of Vegetated Corridor
Primary Protected Water Features ¹	< 25%	<ul> <li>Edge of bankful flow or 2-year storm level;</li> <li>Delineated edge of Title 3 wetland</li> </ul>	50 feet
Primary Protected Water Features ¹	≥ 25% for 150 feet or more5	<ul> <li>Edge of bankful flow or 2-year storm level;</li> <li>Delineated edge of Title 3 wetland</li> </ul>	.200 feet
Primary Protected Water Features ¹	≥ 25% for less than 150 feet ⁵	<ul> <li>Edge of bankful flow or 2-year storm level;</li> <li>Delineated edge of Title 3 wetland</li> </ul>	Distance from starting point of measurement to top of ravine (break in ≥25% slope) ³ , plus 50 feet. ⁴
Secondary Protected Water Features ²	< 25%	<ul> <li>Edge of bankful flow or 2-year storm level;</li> <li>Delineated edge of Title 3 wetland</li> </ul>	15 feet
Secondary Protected Water Features ²	≥ 25%5	<ul> <li>Edge of bankful flow or 2-year storm level;</li> <li>Dellneated edge of Title 3 wetland</li> </ul>	50 feet

Table 1

¹Primary Protected Water Features include: all perennial streams and streams draining greater than 100 acres, Title 3 wetlands, natural lakes and springs

²Secondary Protected Water Features include intermittent streams draining 50-100 acres.

³Where the Protected Water Feature is confined by a ravine or gully, the top of ravine is the break in the  $\geq 25\%$  slope (see slope measurement in Appendix).

- ⁴A maximum reduction of 25 feet may be permitted in the width of vegetated corridor beyond the slope break if a geotechnical report demonstrates that slope is stable. To establish the width of the vegetated corridor, slope should be measured in 25-foot increments away from the water feature until slope is less than 25% (top of ravine).
- ⁵Vegetated corridors in excess of 50-feet for primary protected features, or in excess of 15-feet for secondary protected features, apply on steep slopes only in the *uphill* direction from the protected water feature.

(Note: The following methodology is an alternative for the purposes of substantial compliance: a jurisdiction can meet the performance standards in Title 3 by applying the following method to the water quality resource area: for areas with zero slope (as measured parallel to the ground) the buffer will be 50 feet from top of waterway bank, but for every one percent (1%) slope after that point, add six (6) feet.)

#### D. Uses Permitted Outright

- Stream, wetland, riparian and upland enhancement or restoration projects; and farming practices as defined in ORS 30.930 and farm uses, excluding buildings and structures, as defined in ORS 215.203.
- 2. Placement of structures that do not require a grading or building permit.

(Note: City and Counties have the option of choosing to apply the Water Quality and Flood Management Area performance standards of Table 1 to all structures.)

 Routine repair and maintenance of existing structures, roadways, driveways, utility facilities, accessory uses and other development.

(Note: Local jurisdictions may choose to place this subsection -D3 - in subsection E as item 3, Uses under Prescribed Conditions, and prescribe those conditions.)

- E. Uses Under Prescribed Conditions
  - Repair, replacement or improvement of utility facilities where:
    - The disturbed portion of the Water Quality Resource Area is restored; and
    - Non-native vegetation is removed from the Water Quality Resource Area and replaced with vegetation from the Metro Native Plant List.
  - 2. Additions, alterations, rehabilitation, or replacement of existing structures that do not increase existing structural footprint in the Water Quality Resource Area where the disturbed portion of the Water Quality Resource Area is restored using native vegetative cover.

#### F. Conditional Uses

The following uses are allowed in the Water Quality Resource Area Overlay Zone subject to compliance with the Application Requirements and Development Standards of subsections H and I:

- Any use allowed in the base zone, other than those listed in subsection D and E above.
- Measures to remove or abate nuisances, or any other violation of State statute, administrative agency rule or city or county ordinance.

EXHIBITC

- Roads to provide access to Protected Water Features or necessary ingress and egress across Water Quality Resource Areas.
- 4. New public or private utility facility construction.
- 5. Walkways and bike paths. (Subsection I.5).
- 6. New stormwater pre-treatment facilities (Subsection I.6).
- Widening an existing road adjacent to or running parallel to a Water Quality Resource Area.
- Additions, alterations, rehabilitation or replacement of existing structures, roadways, accessory uses and development that increase the structural footprint within the Water Quality Resource Area consistent with Subsection I.7.
- G. Prohibited Uses
  - Any new structures, development, other than those listed in subsection D, E and F, construction activities, gardens, lawns, dumping of any materials of any kind.
  - Uncontained areas of hazardous materials as defined by the Department of Environmental Quality.
- H. Application Requirements

Applications for Conditional Uses in the Water Quality Resource Area Overlay Zone must provide the following information in addition to the information required for the base zone:

- A topographic map of the site at contour intervals of five feet or less showing a delineation of the Water Quality Resource Area, which includes areas shown on the city/county Water Quality and Flood Management Area map, and that meets the definition of Water Quality Resource Areas in Table 1.
- The location of all existing natural features including, but not limit to, all trees of a caliper greater than six (6) inches diameter at breast height (DBH), natural drainages on the site, springs, seeps and outcroppings of rocks, or boulders within the Water Quality Resource Area.
- Location of Title 3 wetlands. Where Title 3 wetlands are identified, the applicant shall follow the Division of State Lands recommended wetlands

delineation process. The delineation shall be prepared by a professional wetlands specialist.

- An inventory and location of existing debris and noxious materials.
- An assessment of the existing condition of the Water Quality Resource Area in accordance with Table 2.
- An inventory of vegetation, including percentage ground and canopy coverage.
- Alternatives analysis demonstrating that:
  - No practicable alternatives to the requested development exist that will not disturb the Water Quality Resource Area; and
  - Development in the Water Quality Resource Area has been limited to the area necessary to allow for the proposed use; and
  - c. The Water Quality Resource Area can be restored to an equal or better condition in accordance with Table 2; and
  - It will be consistent with a Water Quality Resource Area Mitigation Plan.
  - e. An explanation of the rationale behind choosing the alternative selected, including how adverse impacts to resource areas will be avoided and/or minimized.
    - For applications seeking an alteration, addition, rehabilitation or replacement of existing structures:
      - Demonstrate that no reasonably practicable alternative design or method of development exists that would have a lesser impact on the Water Quality Resource Area than the one proposed; and
      - If no such reasonably practicable alternative design or method of development exists, the project should be conditioned to limit its disturbance and impact on the Water Quality Resource to the minimum extent necessary to achieve the proposed addition, alteration, restoration, replacement or rehabilitation; and

f.

- Provide mitigation to ensure that impacts to the functions and values of the Water Quality Resource Area will be mitigated or restored to the extent practicable.
- A Water Quality Resource Area Mitigation Plan shall contain the following information:
  - A description of adverse impacts that will be caused as a result of development.
  - b. An explanation of how adverse impacts to resource areas will be avoided, minimized, and/or mitigated in accordance with, but not limited to, Table 2.
  - c. A list of all responsible parties including, but not limited to, the owner, applicant, contractor or other persons responsible for work on the development site.
  - d. A map showing where the specific mitigation activities will occur.
  - e. An implementation schedule, including timeline for construction, mitigation, mitigation maintenance, monitoring, reporting and a contingency plan. All in-stream work in fish-bearing streams shall be done in accordance with the Oregon Department of Fish and Wildlife in-stream timing schedule.

#### I. Development Standards

Applications for Conditional Uses in the Water Quality Resource Area Overlay Zone shall satisfy the following standards:

- The Water Quality Resource Area shall be restored and maintained in accordance with the mitigation plan and the specifications in Table 2.
- To the extent practicable, existing vegetation shall be protected and left in place. Work areas shall be carefully located and marked to reduce potential damage to the Water Quality Resource Area. Trees in the Water Quality Resource Area shall not be used as anchors for stabilizing construction equipment.
- 3. Where existing vegetation has been removed, or the original land contours disturbed, the site shall be revegetated, and the vegetation shall be established as soon as practicable. Nuisance plants, as identified in the Metro Native Plant List, may be removed at any time. Interim erosion control measures such as mulching shall be used to avoid erosion on bare

areas. Nuisance plants shall be replaced with non-nuisance plants by the next growing season.

- Prior to construction, the Water Quality Resource Area shall be flagged, fenced or otherwise marked and shall remain undisturbed except as allowed in Subsection F. Such markings shall be maintained until construction is complete.
- 5. Walkways and bike paths:
  - A gravel walkway or bike path shall not be constructed closer than 10 feet from the boundary of the Protected Water Feature. Walkways and bike paths shall be constructed so as to minimize disturbance to existing vegetation. Where practicable, a maximum of 10 percent of the trail may be within 30 feet of the Protected Water Feature.
  - b. A paved walkway or bike path shall not be constructed closer than 10 feet from the boundary of the Protected Water Feature. For any paved walkway or bike path, the width of the Water Quality Resource Area must be increased by a distance equal to the width of the path. Walkways and bike paths shall be constructed so as to minimize disturbance to existing vegetation. Where practicable, a maximum of 10 percent of the trail may be within 30 feet of the Protected Water Feature; and
  - A walkway or bike path shall not exceed 10 feet in width.
- Stormwater pre-treatment facilities:
  - The stormwater pre-treatment facility may only encroach a maximum of 25 feet into the outside boundary of the Water Quality Resource Area of a primary water feature; and
  - b. The area of encroachment must be replaced by adding an equal area to the Water Quality Resource Area on the subject property.
- Additions, alterations, rehabilitation and replacement of lawful structures.
  - a. For existing structures, roadways, driveways, accessory uses and development which are nonconforming, this ordinance shall apply in addition to the nonconforming use regulations of the city/county zoning ordinance.

b. Additions, alterations, rehabilitation or replacement of existing structures, roadways, driveways, accessory uses and development shall not encroach closer to the Protected Water Feature than the existing structures, roadways, driveways, accessory uses and development

#### 8. Off-site Mitigation:

- Where the alternatives analysis demonstrates that there are no practicable alternatives for mitigation on site, off-site mitigation shall be located as follows:
  - As close to the development as is practicable above the confluence of the next downstream tributary, or if this is not practicable;
  - Within the watershed where the development will take place or as otherwise specified by the city or county in an approved Wetland Mitigation Bank.
- b. In order to ensure that the mitigation area will be protected in perpetuity, proof that a deed restriction has been placed on the property where the mitigation is to occur is required.

#### Table 2

#### WATER QUALITY RESOURCE AREA REQUIREMENTS

EXISTING CONDITION OF WATER QUALITY RESOURCE AREA	REQUIREMENTS IF WATER QUALITY RESOURCE AREA REMAINS <u>UNDISTURBED</u> DURING CONSTRUCTION	REQUIREMENTS IF WATER QUALITY RESOURCE AREA IS <u>DISTURBED</u> DURING CONSTRUCTION
<u>Good Existing Corridor</u> : Combination of trees, shrubs and groundcover are 80% present, and there is more than 50% tree canopy coverage in the vegetated corridor.	Provide certification by registered professional engineer, landscape architect, or biologist or other person trained or certified in riparian or wetland delineation that vegetated corridor meets the standards of this ordinance. Inventory and remove debris and noxious materials.	Prior to construction, a biologist or landscape architect shall prepare and submit an inventory of vegetation in areas proposed to be disturbed and a plan for mitigating water quality impacts related to the development, including: sediments, temperature and nutrients sediment control temperature control or addressing any other condition that may have caused the Protected Water Feature to be listed on DEQ's 303 (d) list. Inventory and remove debris

Note: The middle column, being italicized, indicates that it is an option for consideration in the development review process.

EXISTING CONDITION OF WATER QUALITY RESOURCE AREA	REQUIREMENTS IF WATER QUALITY RESOURCE AREA REMAINS <u>UNDISTURBED</u> DURING CONSTRUCTION	REQUIREMENTS IF WATER QUALITY RESOURCE AREA IS <u>DISTURBED</u> DURING CONSTRUCTION
Marginal Existing Vegetated Corridor: Combination of trees, shrubs and groundcover are 80% present, and 25-50 percent canopy coverage in the vegetated corridor.	Provide certification by registered professional engineer, landscape architect, or biologist or other person trained or certified in riparian or wetland delineation that vegetated corridor meets the standards of this ordinance. Inventory and remove debris and noxious materials.	Vegetate disturbed and bare areas with, non-nuisance plantings from Native Plants List. Inventory and remove debris and noxious materials. Revegetate with native species using a City/County approved plan developed to represent the vegetative composition that would naturally occur on the site. Seeding may be required prior to establishing plants for site stabilization. Revegetation must occur during
		Ine next planting season following site disturbance. Annual replacement of plants that do not survive is required until vegetation representative of natural conditions is established on the site. Restore and mitigate according to approved plan using non-nuisance plantings from Native Plants List. Inventory and remove debris and noxious materials.

Note: The middle column, being italicized, indicates that it is an option for consideration in the development review process.

EXISTING CONDITION OF WATER QUALITY RESOURCE AREA	REQUIREMENTS IF WATER QUALITY RESOURCE AREA REMAINS <u>UNDISTURBED</u> DURING CONSTRUCTION	REQUIREMENTS IF WATER QUALITY RESOURCE AREA IS <u>DISTURBED</u> DURING CONSTRUCTION
Degraded Existing Vegetated Corridor: Less vegetation and canopy coverage than Marginal Vegetated Corridors, and/or greater than 10% surface coverage of any non-native species.	Vegetate bare areas with plantings from approved Native Plant List. Remove non-native species and revegetate with plantings from approved Native Plants List. Inventory and remove debris and noxious materials.	Vegetate disturbed and bare areas with appropriate plants from Native Plants List. Remove non-native species and revegetate with non-nuisance plantings from Native Plants List. Plant and seed to provide 100 percent surface coverage. Restore and mitigate according to approved plan using non- nuisance plantings from Native Plants List. Inventory and remove debris and noxious materials.

Note: The middle column, being italicized, indicates that it is an option for consideration in the development review process.

#### Section 5. Flood Management

- A. The purpose of these standards is to reduce the risk of flooding, prevent or reduce risk to human life and property, and maintain the functions and values of floodplains, such as allowing for the storage and conveyance of stream flows through existing and natural flood conveyance systems.
- B. This ordinance establishes a Flood Management Area Overlay Zone, which is delineated on the Water Quality and Flood Management Area Map attached and incorporated by reference as a part of this ordinance.
- C. The Flood Management Areas mapped include:
  - Land contained within the 100-year floodplain, flood area and floodway as shown on the Federal Emergency Management Agency Flood Insurance maps and the area of inundation for the February 1996 flood; and
  - Lands that have physical or documented evidence of flooding within recorded history. Jurisdictions shall use the most recent and technically accurate information available to determine the historical flood area, such as the aerial photographs of the 1996 flooding and digitized flood elevation maps.
  - The standards that apply to the Flood Management Areas apply in addition to local, state or federal restrictions governing floodplains or flood hazard areas.
- D. Uses Permitted Outright:
  - 1. Excavation and fill required to plant any new trees or vegetation.
    - Restoration or enhancement of floodplains, riparian areas, wetland, upland and streams that meet federal and state standards.

#### E. Conditional Uses:

All uses allowed in the base zone or existing flood hazard overlay zone are allowed in the Flood Management Overlay Zone subject to compliance with the Development Standards of subsection H.
# F. Prohibited Uses:

- 1. Any use prohibited in the base zone or existing flood hazard overlay zone.
- Uncontained areas of hazardous materials as defined by the Department of Environmental Quality.

# G. Development Standards

All development, excavation and fill in the floodplain shall conform to the following balanced cut and fill standards:

- No net fill in any floodplain is allowed. All fill placed in a floodplain shall be balanced with at least an equal amount of soil material removal.
- Excavation areas shall not exceed fill areas by more than 50 percent of the square footage.
- Any excavation below bankful stage shall not count toward compensating for fill.

(Note: These areas would be full of water in the winter and not available to hold stormwater.)

- 4. Excavation to balance a fill shall be located on the same parcel as the fill unless it is not reasonable or practicable to do so. In such cases, the excavation shall be located in the same drainage basin and as close as possible to the fill site, so long as the proposed excavation and fill will not increase flood impacts for surrounding properties as determined through hydrologic and hydraulic analysis.
- 5. For excavated areas identified by the city or county to remain dry in the summer, such as parks or mowed areas, the lowest elevation of the excavated area shall be at least 6 inches above the winter "low water" elevation, and sloped at a minimum of two percent towards the Protected Water Feature. One percent slopes will be allowed in smaller areas.
- For excavated areas identified by the city or county to remain wet in the summer, such as a constructed wetland, the grade shall be designed not to drain into the Protected Water Feature.
- Minimum finished floor elevations must be at least one foot above the design flood height or highest flood of record, whichever is higher, for new habitable structures in the Flood Area.

EXHIBIT C

- 8. Short-term parking in the floodplain may be located at an elevation of no more than one foot below the ten-year floodplain so long as the parking facilities do not occur in a Water Quality Resource Area. Long-term parking in the floodplain may be located at an elevation of no more than one foot below the 100-year floodplain so long as the parking facilities do not occur in a Water Quality Resource Area.
- 9. Temporary fills permitted during construction shall be removed.
- 10. New culverts, stream crossings and transportation projects shall be designed as balanced cut and fill projects or designed not to significantly raise the design flood elevation. Such projects shall be designed to minimize the area of fill in Flood Management Areas and to minimize erosive velocities. Stream crossings shall be as close to perpendicular to the stream as practicable. Bridges shall be used instead of culverts wherever practicable.
- 11. Excavation and fill required for the construction of detention facilities or structures, and other facilities, such as levees, specifically shall be designed to reduce or mitigate flood impacts and improve water quality. Levees shall not be used to create vacant buildable lands.

# Section 6. Subdivisions and Partitions (optional)

- A. The purpose of this section is to amend the city/county regulations governing land divisions to require that new subdivision and partition plats delineate and show the Water Quality Resource Area as a separate tract.
- B. The standards for land divisions in Water Quality Resource Areas Overlay Zone shall apply in addition to the requirements of the city/county land division
  ordinance and zoning ordinance.
- C. Prior to preliminary plat approval, the Water Quality Resource Area shall be shown as a separate tract, which shall not be a part of any parcel used for construction of a dwelling unit.
- D. Prior to final plat approval, ownership of the Water Quality Resource Area tract shall be identified to distinguish it from lots intended for sale. The tract may be identified as any one of the following:
  - 1. Private open space held by the owner or homeowners association; or
  - For residential land divisions, private open space subject to an easement conveying storm and surface water management rights to the city/county and preventing the owner of the tract from activities and uses inconsistent with the purpose of this ordinance; or

- At the owner's option, public open space where the tract has been dedicated to the city/county or other governmental unit; or
- Any other ownership proposed by the owner and approved by the Director.
- E. Where the Water Quality Resource Area tract is dedicated to the city/county or other governmental unit, development shall be subject to a minimum 3-foot setback from the Water Quality Resource Area.

Section 7. Density Transfers

- A. The purpose of this section is to allow density accruing to portions of a property within the Water Quality Resource Area and Flood Management Area Overlay Zones to be transferred outside the overlay zones.
- B. Development applications that request a density transfer must provide the following information:
  - A map showing the net buildable area to which the density will be transferred.
  - Calculations justifying the requested density increase.
- C. Density transfers shall be allowed if the applicant demonstrates compliance with the following standards:
  - 1. The density proposed for the lot receiving the density is not increased to more than two (2) times the permitted density of the base zone. Fractional units shall be rounded down to the next whole number.

(Note: This is one way of restricting density.)

2. Minimum density standards will not increase due to the density transfers.

D. The area of land contained in a Water Quality Resource Area may be excluded from the calculations for determining compliance with minimum density requirements of the zoning code.

All standards of the base zone other than density requirements continue to apply.

Density transfers shall be recorded on the title of the lot in the Water Quality Resource Area and on the title of the transfer lot.

For residential tent devisions, private open space subject to an easement conveying storm and surface water management rights to the city/county and preventing the owner of the tract from activities and uses inconsistent with the purpose of this ordinance; or

EXHIBIT C

E.

F.

Page 23

Page 24

G. Once density is transferred from a lot in the Water Quality Resource Area, the density increase allocated to the transfer lot may not be transferred to any other lot.

# Section 8. Erosion Prevention and Sediment Control

- A. The purpose of this section is to require erosion prevention measures and sediment control practices for all development inside and outside the Water Quality Resource Area and Flood Management Area Overlay Zones during construction to prevent and restrict the discharge of sediments, and to require final permanent erosion prevention measures, which may include landscaping, after development is completed. Erosion prevention techniques shall be designed to protect soil particles from the force of water and wind so that they will not be transported from the site. Sediment control measures shall be designed to capture soil particles after they have become dislodged by erosion and attempt to retain the soil particles on site.
- B. Prior to, or contemporaneous with, approval of an application that may cause visible or measurable erosion, the applicant must obtain an Erosion and Sediment Control Permit.
- C. An application for an Erosion and Sediment Control Permit shall include an Erosion and Sediment Control Plan, which contains methods and interim measures to be used during and following construction to prevent or control erosion. The plan shall demonstrate the following:
  - The Erosion and Sediment Control Plan meets the requirements of the Erosion Prevention and Sediment Control Plans, Technical Guidance Handbook (Handbook) attached and incorporated by reference as part of this ordinance;
  - 2. The Erosion and Sediment Control Plan will:
    - Prevent erosion by employing prevention practices such as nondisturbance, construction schedules, erosion blankets and mulch covers; or
    - Ensure that where erosion cannot be completely avoided, the sediment control measures will be adequate to prevent erosion from entering the public stormwater system, surface water system, and Water Quality Resource Areas; and
    - c. Allow no more than a ten percent cumulative increase in natural stream turbidities, as measured relative to a control point immediately upstream of the turbidity causing activity. However, limited duration activities necessary to address an emergency or to accommodate essential dredging, construction or other legitimate

activities, and that cause the standard to be exceeded may be authorized provided all practicable turbidity control techniques have been applied.

- 3. The applicant will actively manage and maintain erosion control measures and utilize techniques described in the Permit to prevent or control erosion during and following development. Erosion and sediment control measures required by the Permit shall remain in place until disturbed soil areas are permanently stabilized by landscaping, grass, approved mulch or other permanent soil stabilizing measures;
- 4. No mud, dirt, rock or other debris will be deposited upon a public street or any part of the public stormwater system, surface water system, Water Quality Resource Area, or any part of a private stormwater system or surface water system that drains or connects to the public stormwater or surface water system.
- D. The Erosion and Sediment Control Plan shall be reviewed in conjunction with the requested development approval. If the development does not require review under Sections 3 and 4 of this ordinance, the Director may approve or deny the permit with notice of the decision to the applicant.
- E. The city or county may inspect the development site to determine compliance with the Erosion and Sediment Control Plan and Permit.
- F. Erosion that occurs on a development site that does not have an Erosion and Sediment Control Permit, or that results from a failure to comply with the terms of such a Permit, constitutes a violation of this ordinance.
- G. If the Director finds that the facilities and techniques approved in an Erosion and Sediment Control Plan and Permit are not sufficient to prevent erosion, the Director shall notify the permittee. Upon receiving notice, the permittee shall immediately install interim erosion and sediment control measures as specified in the Handbook. Within three days from the date of notice, the permittee shall submit a revised Erosion and Sediment Control Plan to the city or county. Upon approval of the revised plan and issuance of an amended Permit, the permittee shall immediately implement the revised plan.

# Section 9. Variances

A. The purpose of this Section is to ensure that compliance with this ordinance does not cause unreasonable hardship. To avoid such instances, the requirements of this ordinance may be varied. Variances are also allowed when strict application of this ordinance would deprive an owner of all economically viable use of land.

EXHIBIT C

Page 26

- B. This Section applies in addition to the standards governing proposals to vary the requirements of the base zone.
- C. The Director shall provide the following notice of variance applications:
  - Upon receiving an application to vary the requirements of this ordinance, the Director shall provide notice of the request to all property owners within (100) feet inside the urban growth boundary, (250) feet outside the urban growth boundary and Metro.
  - Within (7) days of a decision on the variance, the Director shall provide notice of the decision to all property owners within (100) feet inside the urban growth boundary, (250) feet outside the urban growth boundary and Metro.
- D. Development may occur on lots located completely within the Water Quality Resource Overlay Zone that are recorded with the county assessor's office on or before the date this ordinance is adopted. Development shall not disturb more than 5,000 square feet of the vegetated corridor, including access roads and driveways, subject to the erosion and sediment control standards of this ordinance.

# E. Hardship Variance

Variances to avoid unreasonable hardship caused by the strict application of this ordinance are permitted subject to the criteria set forth in this section. To vary from the requirements of this ordinance, the applicant must demonstrate the following:

- The variance is the minimum necessary to allow the proposed use or activity;
- 2. The variance does not increase danger to life and property due to flooding or erosion;
  - 3. The impact of the increase in flood hazard, which will result from the variance, will not prevent the city or county from meeting the requirements of this ordinance. In support of this criteria the applicant shall have a qualified professional engineer document the expected height, velocity and duration of flood waters, and estimate the rate of increase in sediment transport of the flood waters expected both downstream and upstream as a result of the variance;
  - The variance will not increase the cost of providing and maintaining public services during and after flood conditions so as to unduly burden public agencies and taxpayers;

- Unless the proposed variance is from Section 4.H.8 (mitigation) or Section 8 (erosion control), the proposed use will comply with those standards; and
- The proposed use complies with the standards of the base zone.
- F. Buildable Lot Variance

A variance to avoid the loss of all economically viable use of a lot that is partially inside the Water Quality Resource Overlay Zone is permitted. Development on such lots shall not disturb more than 5,000 square feet of the vegetated corridor, including access roads and driveways, subject to the erosion and sediment control standards in Section 8 of this ordinance. Applicants must demonstrate the following:

- Without the proposed variance, the applicant would be denied economically viable use of the subject property. To meet this criterion, the applicant must show that:
  - The proposed use cannot meet the standards in Section 9.E (hardship variance); and
  - b. No other application could result in permission for an economically viable use of the subject property. Evidence to meet this criterion shall include a list of uses allowed on the subject property.
- The proposed variance is the minimum necessary to allow for the requested use;
- 3. The proposed variance will comply with Section 4.H.8 (mitigation) and Section 8 (erosion control); and
  - 4. The proposed use complies with the standards of the base zone.
- G. Variance Conditions

The Director may impose such conditions as are deemed necessary to limit any adverse impacts that may result from granting relief. If a variance is granted pursuant to subsections E. 1-6, the variance shall be subject to the following conditions:

 The minimum width of the vegetated corridor shall be 15 feet on each side of a Primary Protected Water Feature, except as allowed in Section 4F;

- No more than 25 percent of the length of the Water Quality Resource Area for a Primary Protected Water Feature within a development site can be less than 30 feet in width on each side of the water feature; and
- 3. In either case, the average width of the Water Quality Resource Area shall be a minimum of 15 feet on each side for Secondary Protected Water Features, a minimum of 50 feet on each side for Primary Protected Water Features; or up to 200 feet on each side in areas with slopes greater than 25 percent. The stream shall be allowed to meander within this area, but in no case shall the stream be less than 10 feet from the outer boundary of the Water Quality Resource Area.

# Section 10. Map Administration

- A. The purpose of this section is to provide a process for amending the Water Quality and Flood Management Areas map to add wetlands and correct the location of Protected Water Features and the Water Quality Resource Areas and Flood Management Area Overlay Zones.
- B. Map Corrections
  - Within 90 days of receiving information establishing a possible error in the existence or location of a Protected Water Feature, Water Quality Resource Area Overlay Zone or Flood Management Area Overlay Zone, the city/county shall provide notice to interested parties of a public hearing at which the city/county will review the information.

2 The city/county shall amend the Water Quality and Flood Management Areas map if the information demonstrates:

- That a Primary or Secondary Protected Water Feature no longer exists because the area has been legally filled, culverted or developed prior to the adoption of this ordinance; or
- b. The boundaries of the Water Quality Resource Area Overlay Zone or Flood Management Area Overlay Zone have changed since adoption of the Water Quality and Flood Management Areas map.
- C. Modification of the Water Quality Resource Area

To modify the Water Quality Resource Area Overlay Zone, the applicant shall demonstrate that the modification will offer the same or better

protection of the Protected Water Feature, Water Quality Resource Area and Flood Management Area by:

- Preserving a vegetated corridor that will separate the Protected Water Feature from proposed development; and
- Preserving existing vegetated cover or enhancing the Water Quality Resource Area sufficient to assist in maintaining or reducing water temperatures in the adjacent Protected Water Feature; and
- Enhancing the Water Quality Resource Area sufficient to minimize erosion, nutrient and pollutant loading into the adjacent Protected Water Feature; and
- Protecting the vegetated corridor sufficient to provide filtration, infiltration and natural water purification for the adjacent Protected Water Feature; and
- 5. Stabilizing slopes adjacent to the Protected Water Feature.
- D. Adding Title 3 Wetlands
  - Within 90 days of receiving evidence that wetland meets any of one of the criteria in D.2., the city/county shall provide notice to interested parties of a public hearing at which the city/county will review the evidence.
  - A wetland shall be protected by the standards set forth in this ordinance if the wetland meets any one of the following criteria:
    - a. The wetland is fed by surface flows, sheet flows or precipitation, and has evidence of flooding during the growing season, and has 60 percent or greater vegetated cover, and is over one-half acre in size;

or the wetland qualifies as having "intact water quality function" under the 1996 Oregon Freshwater Wetland Assessment Methodology; or

b.

The wetland is in the Flood Management Area, and has evidence of flooding during the growing season, and is five acres or more in size, and has a restricted outlet or no outlet;

or the wetland qualifies as having "intact hydrologic control function" under the 1996 Oregon Freshwater Wetland Assessment Methodology; or c. The wetland or a portion of the wetland is within a horizontal distance of less than one-fourth mile from a water body which meets the Department of Environmental Quality definition of "water quality limited water body" in OAR Chapter 340, Division 41 (1996).

# Section 11. Consistency

Where the provisions of this ordinance are less restrictive or conflict with comparable provisions of the zoning ordinance, regional, state or federal law, the provisions that are more restrictive shall govern. Where this ordinance imposes restrictions that are more stringent than regional, state and federal law, the provisions of this ordinance shall govern.

# Section 12. Warning and Disclaimer of Liability

The degree of flood protection required by this ordinance is considered reasonable for regulatory purposes and is based on scientific and engineering considerations. Larger floods can and will occur on rare occasions. Flood heights may be increased by man-made. or natural causes. This ordinance does not imply that land outside the areas of special flood hazards or uses permitted within such areas will be free from flooding or flood damage. This ordinance shall not create liability on the part of the City or County, any officer or employee thereof, or the Federal Insurance Administration, for any damages that result from reliance on this ordinance or any administrative decision lawfully made hereunder.

# Section 13. Severability

The provisions of this ordinance are severable. If any section, clause or phrase of this ordinance is adjudged to be invalid by a court of competent jurisdiction, the decision of that court shall not affect the validity of the remaining portions of this ordinance.

# Section 14. Enforcement

- A. No person shall engage in or cause to occur any development, use or activity that fails to meet the standards and requirements of this ordinance. Development, uses or activities that are not specifically allowed within the Water Quality Resource Area are prohibited. All activities that may cause visible or measurable erosion are prohibited prior to the applicant obtaining an Erosion and Sediment Control Permit.
- B. In addition to other powers the city or county may exercise to enforce this ordinance, the city or county may:
  - Establish a cooperative agreement between the (enforcement authority) and the applicant (or responsible party) to remedy the violation.

- 2. Issue a stop work order.
- Impose a civil penalty of not more than \$_____ for each violation upon the permittee, contractor or person responsible for carrying out the development work. Each day of violation shall constitute a separate offense.
- 4. Cause an action to be instituted in a court of competent jurisdiction.
- Authorize summary abatement and subsequent recovery of costs incurred by the city or county.

in the standard from the second terrority

C. Upon notification by the city or county of any violation of this ordinance the applicant, permittee, contractor or person responsible for carrying out development work may be required to immediately install emergency erosion and sediment control measures that comply with Section 8.

# Section 15. Definitions

Definitions. Unless specifically defined below, words or phrases used in this section shall be interpreted to give them the same meaning as they have in common usage and to give this classification its most reasonable application.

Architect - An architect licensed by the State of Oregon.

Bankful Stage - Defined in OAR 141-85-010 (definitions for Removal/Fill Permits) as the stage or elevation at which water overflows the natural banks of a stream or other waters of the state and begin to inundate upland areas. In the absence of physical evidence, the two-year recurrent flood elevation may be used to approximate the bankful stage.

Created Wetlands - Those wetlands developed in an area previously identified as a nonwetland to replace, or mitigate wetland destruction or displacement. A created wetland shall be regulated and managed the same as an existing wetland.

Constructed Wetlands - Those wetlands developed as a water quality or quantity facility, subject to change and maintenance as such. These areas must be clearly defined and/or separated from naturally occurring or created wetlands.

Debris - discarded man-made objects that would not occur in an undeveloped stream corridor or wetland. Debris includes, but is not limited to, tires, vehicles, litter, scrap metal, construction waste, lumber, plastic or styrofoam. Debris does not include objects necessary to a use allowed by this ordinance, or ornamental and recreational structures. Debris does not include existing natural plant materials or natural plant materials which are left after flooding, downed or standing dead trees or trees which have fallen into protected water features.

Department of Environmental Quality (DEQ) Water Quality Standards - The numerical criteria or narrative condition needed in order to protect an identified beneficial use.

Design Flood Elevation - the elevation of the 100-year storm as defined in FEMA Flood Insurance Studies or, in areas without FEMA floodplains, the elevation of the 25-year storm, or the edge of mapped flood prone soils or similar methodologies.

Development - any man-made change defined as buildings or other structures, mining, dredging, paving, filling, or grading in amounts greater than ten (10) cubic yards on any lot or excavation. In addition, any other activity that results in the removal of more than 10 percent of the vegetation in the Water Quality Resource Area on the lot is defined as development, for the purpose of Title 3 except that more than 10 percent removal of vegetation on a lot must comply with Section 4C - Erosion and Sediment Control. Development does not include the following: a) Stream enhancement or restoration projects approved by cities and counties; b) Farming practices as defined in ORS 30.930 and farm use as defined in ORS 215.203, except that buildings associated with farm practices and farm uses are subject to the requirements of Title 3; and c) Construction on lots in subdivisions meeting the criteria of ORS 92.040(2) (1995).

**Disturb** - man-made changes to the existing physical status of the land, which are made in connection with development. The following uses are excluded from the definition:

enhancement or restoration of the Water Quality Resource Area;

planting native cover identified in the Metro Native Plant List.

Division of State Lands Wetland Determinations - As defined in OAR 141-86-200 (1997) (definitions for Local Wetland Inventory Standards and Guidelines), "wetland determination" means identifying an area as wetland or non-wetland.

**Emergency** - any man-made or natural event or circumstance causing or threatening loss of life, injury to person or property, and includes, but is not limited to, fire, explosion, flood, severe weather, drought earthquake, volcanic activity, spills or releases of oil or hazardous material, contamination, utility or transportation disruptions, and disease.

Engineer - A registered professional engineer licensed by the State of Oregon.

Enhancement - the process of improving upon the natural functions and/or values of an area or feature which has been degraded by human activity. Enhancement activities may or may not return the site to a pre-disturbance condition, but create/recreate processes and features that occur naturally.

Engineering Geologist - A registered professional engineering geologist licensed by the State of Oregon.

Erosion - Erosion is the movement of soil particles resulting from actions of water or wind.

Fill - any material such as, but not limited to, sand, gravel, soil, rock or gravel that is placed in a Title 3 wetland or floodplain for the purposes of development or redevelopment.

Floodway Fringe - The area of the floodplain, lying outside the floodway, which does not contribute appreciably to the passage of flood water, but serves as a retention area.

Floodplain - The land area identified and designated by the United States Army Corps of Engineers, the Oregon Division of State Lands, FEMA, or (identify name) county/city that has been or may be covered temporarily by water as a result of a storm event of identified frequency. It is usually the flat area of land adjacent to a stream or river formed by floods. Floodway - The portion of a watercourse required for the passage or conveyance of a given storm event as identified and designated by the (identify name) city/county pursuant to this Ordinance. The floodway shall include the channel of the watercourse and the adjacent floodplain that must be reserved in an unobstructed condition in order to discharge the base flood without flood levels by more than one foot.

Flood Management Areas - all lands contained within the 100-year floodplain, flood area and floodway as shown on the Federal Emergency Management Agency Flood Insurance Maps and the area of inundation for the February 1996 flood. In addition, all lands which have documented evidence of flooding.

Invasive Non-native or Noxious Vegetation - plant species that have been introduced and due to aggressive growth patterns and lack of natural enemies in the area where introduced, spread rapidly into native plant communities, or which are not listed on the Metro Native Plant List as adopted by Metro Council resolution.

Lot - Lot means a single unit of land that is created by a subdivision of land. (ORS 92.010(3)).

Mitigation - the reduction of adverse effects of a proposed project by considering, in the order: a) avoiding the impact all together by not taking a certain action or parts of an action; b) minimizing impacts by limiting the degree or magnitude of the action and its implementation; c) rectifying the impact by repairing, rehabilitating or restoring the effected environment; d) reducing or eliminating the impact over time by preservation and maintenance operations during the life of the action by monitoring and taking appropriate measures; and e) compensating for the impact by replacing or providing comparable substitute water quality resource areas.

Native Vegetation - any vegetation native to the Portland metropolitan area or listed on the Metro Native Plant list as adopted by Metro Council resolution.

**ODFW** Construction Standards - Oregon Department of Fish and Wildlife construction guidelines for building roads, bridges and culverts or any transportation structure within a waterway.

Open Space - Land that is undeveloped and that is planned to remain so indefinitely. The term encompasses parks, forests and farm land. It may also refer only to land zoned as being available to the public, including playgrounds, watershed preserves and parks.

Ordinary Mean High Water Line - As defined in OAR 141-82-005 as the line on the bank or shore to which water ordinarily rises in season; synonymous with Mean High Water (ORS 274.005).

Ordinary Mean Low Water Line - As defined in OAR 141-82-005 as the line on the on the bank or shore to which water ordinarily recedes in season; synonymous with Mean Low Water (ORS 274.005).

Owner or Property Owner - The person who is the legal record owner of the land, or where there is a recorded land sale contract, the purchaser thereunder.

Parcel - Parcel means a single unit of land that is created by a partitioning of land. (ORS 92.010(7)).

Perennial Streams - means all primary and secondary perennial water ways mapped by the U.S. Geological Survey.

Plans - The drawings and designs that specify construction details as prepared by the Engineer.

Post-Construction Erosion Control - Consists of re-establishing groundcover or landscaping prior to the removal of temporary erosion control measures.

Practicable - means available and capable of being done after taking into consideration cost, existing technology, and logistics in light of overall project purpose.

# Protected Water Features

Primary Protected Water Features shall include:

- a. Title 3 wetlands; and
- rivers, streams, and drainages downstream from the point at which 100 acres or more are drained to that water feature (regardless of whether it carries year-round flow); and
- c. streams carrying year-round flow; and
- d. springs which feed streams and wetlands and have year-round flow and
- e. natural lakes.

Secondary Protected Water Features shall include intermittent streams and seeps downstream of the point at which 50 acres are drained and upstream of the point at which 100 acres are drained to that water feature.

Restoration - the process of returning a disturbed or altered area or feature to a previously existing natural condition. Restoration activities reestablish the structure, function, and/or diversity to that which occurred prior to impacts caused by human activity.

EXHIBIT C

"Resource" versus "Facility" - The distinction being made is between a "resource," a functioning natural system such as a wetland or stream; and a "facility" which refers to a created or constructed structure or drainage way that is designed, constructed and maintained to collect and filter, retain, or detain surface water run-off during and after a storm event for the purpose of water quality improvement.

Riparian - Those areas associated with streams, lakes and wetlands where vegetation communities are predominately influenced by their association with water.

Routine Repair and Maintenance - activities directed at preserving an existing allowed use or facility, without expanding the development footprint or site use.

Set-back Adjustment - The placement of a building a specified distance away from a road, property line or protected resource.

Significant Negative Impact - an impact that affects the natural environment, considered individually or cumulatively with other impacts on the Water Quality Resource Area, to the point where existing water quality functions and values are degraded.

Statewide Planning Goal 5 - Oregon's statewide planning goal that addresses open space, scenic and historic areas, and natural resources. The purpose of the goal is to conserve open space and protect natural and scenic resources.

Statewide Planning Goal 6 - Oregon's statewide planning goal that addresses air, water and land resources quality to "maintain and improve the quality of the air, water and land resources of the state" as implemented by the Land Conservation and Development Commission (LCDC).

Statewide Planning Goal 7 - Oregon's statewide planning goal that addresses areas subject to natural disasters and hazards to "protect life and property from natural disasters and hazards" as implemented by the Land Conservation and Development Commission (LCDC).

Steep slopes - Steep slopes are those slopes that are equal to or greater than 25%. Steep slopes have been removed from the "buildable lands" inventory and have not been used in calculations to determine the number of acres within the urban growth boundary which are available for development.

Stormwater Pre-treatment Facility – any structure or drainage way that is designed, constructed, and maintained to collect and filter, retain, or detain surface water run-off during and after a storm event for the purpose of water quality improvement.

Stream - a body of running water moving over the earth's surface in a channel or bed, such as a creek, rivulet or river. It flows at least part of the year, including perennial and intermittent streams. Streams are dynamic in nature and their structure is maintained through build-up and loss of sediment.

Structure - A building or other major improvement that is built, constructed or installed, not including minor improvements, such as fences, utility poles, flagpoles or irrigation system components, that are not customarily regulated through zoning codes.

Substantial Compliance - city and county comprehensive plans and implementing ordinances, on the whole, conform with the purposes of the performance standards in the functional plan and any failure to meet individual performance standard requirements is technical or minor in nature.

Title 3 Wetlands - wetlands of metropolitan concern as shown on the Metro Water Quality and Flood Management Area Map and other wetlands added to city or county adopted Water Quality and Flood Management Area maps consistent with the criteria in Title 3, Section 7.C. Title 3 wetlands do not include artificially constructed and managed stormwater and water quality treatment facilities.

Top of Bank - The same as "bankful stage" defined in OAR 141-85-010(2).

Utility Facilities - buildings, structures or any constructed portion of a system which provides for the production, transmission, conveyance, delivery or furnishing of services including, but not limited to, heat, light, water, power, natural gas, sanitary sewer, stormwater, telephone and cable television. Utility facilities do not include stormwater pre-treatment facilities.

Variance - means a discretionary decision to permit modification of the terms of an implementing ordinance based on a demonstration of unusual hardship or exceptional circumstances unique to a specific property.

#### . .

Vegetated Corridor – the area of setback between the top of bank of a Protected Water Feature and the delineated edge of the Water Quality Resource Area as defined in Table 1.

Visible or Measurable Erosion - Visible or measurable erosion includes, but is not limited to:

Deposits of mud, dirt sediment or similar material exceeding one-half cubic foot in volume on public or private streets, adjacent property, or onto the storm and surface water system, either by direct deposit, dropping discharge, or as a result of the action of erosion.

Evidence of concentrated flows of water over bare soils; turbid or sediment laden flows; or evidence of on-site erosion such as rivulets on bare soil slopes, where the flow of water is not filtered or captured on the site.

Earth slides, mudflows, earth sloughing, or other earth movement that leaves the property.

Water Quality Resource Areas - vegetated corridors and the adjacent water feature as established in Title 3.

Water Quality and Floodplain Management Area - The area that identifies where the Water Quality Resource Area and Floodplain Management Area Overlay Zone is applied.

Water Quality Facility - Any structure or drainage way that is designed, constructed and maintained to collect and filter, retain, or detain surface water run-off during and after a storm event for the purpose of water quality improvement. It may also include, but is not limited to, existing features such as constructed wetlands, water quality swales, and ponds that are maintained as stormwater quality control facilities.

Watershed - A watershed is a geographic unit defined by the flows of rainwater or snowmelt. All land in a watershed drains to a common outlet, such as a stream, lake or wetland.

Wetlands - Wetlands are those areas inundated or saturated by surface or ground water at a frequency and duration sufficient to support and under normal circumstances do support a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs and similar areas. Wetlands are those areas identified and delineated by a qualified wetland specialist as set forth in the 1987 Corps of Engineers Wetland Delineation Manual.

APPENDIX

Proposed Method for Determining Vegetated Corridors Next to Primary Protected Water Features

How measure slope (Figure 1)

Measure 50 feet horizontally (L1) from the stream (top of bank) and determine the slope (H1/L1 - the difference in elevation divided by the difference in horizontal distance multiplied by 100).

If the slope in this 50-foot area is less than 25%, the corridor width is 50 feet from the top of bank (see Figure 2).

If the slope in the 50-foot area is 25% or greater, measure another 25 feet horizontally. If the slope in this incremental 25-foot area is now *less than* 25% (H2/L2 < 25%), the vegetated corridor width would be 100 feet (50 feet for the horizontal distance from the top of bank with slope greater than 25% *PLUS* an additional 50 feet). (See Figure 3.)

If the slope is greater than 25% in this incremental 25-foot area, continue measuring the slope every 25 feet (H/L) until you either:

(a) find a slope less than 25% (see Figure 4), or

(When you find a slope less than 25%, the vegetated corridor equals the distance from the stream's top of bank to the end point of the last surveyed 25-foot increment with a slope greater than 25% PLUS an additional 50 feet).

(b) reach 200 feet (the maximum corridor width). (See Figure 5.)











#### Advantages:

- Provides protection for most steep slopes, yet corridor widths can be varied to fit a number of different situations (corridor widths include 50 feet to 100 feet, 125 feet, 150 feet, 175 feet, and 200 feet)
- Provides flexibility.

# **Disadvantages:**

 Does not protect slopes that rise steeply after a gradual "floodplain" area.





Proposed Matlace Reliance In Presentation Vage teted Confident Real to Present Protected Write: Partners

t state?) meets writes in wall

Mattouro 50 (ant haddometry (t.1) fram the annota (top of bank) ant data mina (to stop (MNR 1 - An difference to stovelop dedact by the difference in tration on delation mutation by 1005.

15%, Park comid - Marin In 10, her from the list of the K (tee Figure 3).

with the state local of the state of the second s

If the model in the 30-boot area to 70%, and or states, measure another 23 the increased of the second second second second 25 fords area is now feet them 25%, (POLA 25%). The wagefered complex wight would be 70% real (50 feet for the transition wight distance from the transition realization distance from the transition realization freed, (Second prive 3)

it the slopp is greater (non-15% in the instrumental 25 (no) and, douting mit studing the slope avery 25 (net (141,1 mit you eithor

> rati find a slopa tase (non 25%). (itea Figure 41 ar

(Alter Sound & Store Less Proc 25%, No. 1976; C. Store Equals and Calence Index and Calence Countries and word count of the Less Countries of Calence Index and count of the Less Countries of Calence Index and countries of alter Calence Trans 2018; Pt 105 an additioner

b) satisfi 200 (nu (trja ministrum comdoraldini (Sèa Figura 5)

Appendix H EQUIVALENT SERVICE UNIT (ESU) BASIS, EXISTING AND FUTURE



Scappoose Storm Drain System Master Plan

		Imperv	nous Coverage					
No.		Land	Imperv					
	East / West	Street	Between	Use Zone	Area			
-	of Hwy 30				sq ft			
1	FAST	NF Laurel	3rd & 4th	R-4	2137.0			
2	EAST	Sawver	NE Prairie/Williams	R-4	2144.0			
4	EAST	Sawver	NE Prairie/Williams	R-4	3204.0			
5	EAST	SE Myrtle	3rd & 4th	R-4	2927.0			
6	EAST	SE Maple	3rd & 4th	R-4	2490.0			
7	EAST	SE Ironwood Ct	n/a	R-1	3475.0			
8	EAST	SE Oak	east of 4th	R-4	2566.0			
9	EAST	SE Santosh	SE 3rd & SE 4th	R-4	2937.0			
11	WEST	SW Day	West of SW 4th	R-4	2530.0			
12	WEST	SW 3rd	SW Maple & JP West Road	R-4	2758.0			
13	WEST	Julie Court	West of SW 4th	R-4	2088.0			
14	WEST	JP West Road	SW 2nd & SW 4th	R-4	2764.0			
15	EAST	Woodmere Court	Contract Annual Annual and Annual	R-4	3010.0			
16	WEST	SW Creekview Place	SW Park & SW Meadow Dr	R-4	2948.0			
17	WEST	SW Meadow Drive	SW Creekview Pl & SW 4th	R-4	2601.0			
18	WEST	SW 4th Street	SW Park & SW Meadow	R-4	2932.0			
19	WEST	Sunset Drive	NW 11th & NW 14th	R-1	2010.0			
20	WEST	NW Bella Vista	NW 11th & NW Smith	R-1	3628.0			
21	WEST	<b>Ridge Drive</b>	Cliff Road & Cose	R-1	2380.0			
22	WEST	Cose Street	South of Ridge	R-1	2758.0			
23	WEST	Cliff Road		R-1	2450.0			
24	WEST	Peak Road	Five Peak Terr & View Terr.	R-1	3048.0			
25	EAST	6th Street	North of Vine	R-4	3087.0			
-	average				2733.6			
	max				3628.0			
	min				2010.0			
	std dev			and the second	428.2			
-	median				2758.0			
	low				2519.5			
3	average				2733.6			
	high				2947.6			

		Existin	g Stormwater	City of S Equival	Scappoos ent Service	se 2 Unit(ESU)	Invento	rv.		
	Population	Dwelling	Dwelling Units/	Zoned	Developed	Undeveloped	C-value	Impervious Area		ESUs
		Units	Acre	Acreage				Acreage	Sq Ft	2750
SF Residential	3630	1318	6				100			1,318.0
MF Residential	970	388	15		25.9		0.50	12.9	563,376	204.9
Commercial	11	190.3		100	65	35	0.65	42.3	1,840,410	669.2
Industrial				231	126	105	0.80	100.8	4,390,848	1,596.7
Parks/Schools	1111-	1000					1000	12 13	68	100.0
Other	4.12		and the second	NE VIE	18 11		-		13	20.0
	MARK	1.1		HIVE-			-	0 77	12.1	3,908.8
									\$2.00	\$93,811
Computed:	2.70	People per d	welling - composite						\$3.00	\$140,716
Computed:		22.7%	MF Dwellings of To	tal					\$4.00	\$187,621
1.1.1.1.1.1									\$5.00	\$234,527
Comm+Indust				331	191	140		143.1	6,231,258	2,265.9
	Population	Dwelling	Dwelling Units/	Zoned	Developed	Undeveloped	C-value	Imperv	ious Area	ESUs
L. P		Units	Acre	Acreage	0.51 W.8.	Set Lineary	Una D.V	Acreage	Sq Ft	2750
SF Residential	8000	2909	6				and the second	0.16		2,909.1
MF Residential	2000	800	15		53.3	Sec.	0.50	26.7	1,161,600	422.4
Commercial	100	(+N)	A	100	65	35	0.65	65.0	2,831,400	1,029.6
Industrial	1.00	6.S. (	Contrast (	231	126	105	0.80	184.8	8,049,888	
Bester Westerste	1000	A 10 10 10 10								2,927.2
Parks/Schools				2 in here		11	William W.	n = 12		2,927.2 150.0
Other	100 m			2 in her	100		in Tangki In Card	a 12 5 75	The last	2,927.2 150.0 40.0
Other				2 in her	100	1	diga The Sector	12	The last	2,927.2 150.0 40.0 7,478.3
Other			and the first of the	2 in her	our o			12	\$2.00	2,927.2 150.0 40.0 7,478.3 \$179,480
Other Remainin	g ESUs	3,569.5	in Vine Turk	2 is las					\$2.00 \$3.00	2,927.2 150.0 40.0 7,478.3 \$179,480 \$269,220
Other Remainin	g ESUs	3,569.5	en , , , , , , , , , , , , , , , , , , ,	2 the last sectors a	in tarð Navað		all agh an Sinci All an Sinci All		\$2.00 \$3.00 \$4.00	2,927.2 150.0 40.0 7,478.3 \$179,480 \$269,220 \$358,959
Other Remainin	g ESUs	3,569.5	in Vinne Yuk	2 in his sector					\$2.00 \$3.00 \$4.00 \$5.00	2,927.2 150.0 40.0 7,478.3 \$179,480 \$269,220 \$358,959 \$448,699
Other Remainin Comm+Indust	g ESUs	3,569.5	en Antinoi V A	331	191	140		249.8	\$2.00 \$3.00 \$4.00 \$5.00 10,881,288	2,927.2 150.0 40.0 7,478.3 \$179,480 \$269,220 \$358,959 \$448,699 3,956.8

Appendix I STORM DRAINAGE UTILITY ORDINANCE AND RESOLUTION



Scappoose Storm Drain System Master Plan

#### SCAPPOOSE ORDINANCE - DRAFT

# ORDINANCE NO.

# AN ORDINANCE OF THE CITY OF SCAPPOOSE, OREGON, RELATING TO UTILITIES AND STORMWATER MANAGEMENT; AMENDING THE SCAPPOOSE MUNICIPAL CODE TO ADD A NEW CHAPTER ESTABLISHING A STORMWATER MANAGEMENT UTILITY; ADOPTING A SYSTEM AND PLAN FOR THAT UTILITY.

WHEREAS, the City Council of the City of Scappoose (the "City") has determined that the City's physical growth and urban development has and will continue to increase the volume of stormwater runoff collected in and routed through the City's man-made and natural stormwater facilities and system ("stormwater system"); and

WHEREAS, the City Council finds that stormwater runoff causes property damage and erosion; carries concentrations of nutrients, heavy metals, oil and toxic materials into receiving waters and ground water; degrades the integrity of City streets and the transportation system; and reduces citizen access to emergency services and poses hazards to both lives and property; and

WHEREAS, the City Council has determined that stormwater runoff must be managed in a manner that protects the public health, safety and welfare; and

WHEREAS, based on recommendations from the City's stormwater management consultant team, the City Council finds that stormwater quality and quantity problems cannot be allowed to escalate as a result of inadequate design criteria, regulation, maintenance, improvement, public awareness or code enforcement; and

WHEREAS, the City Council finds that the City's stormwater system must be funded in a manner enabling comprehensive maintenance, operation, regulation and improvement of the system; and

WHEREAS, the City Council finds that all impervious surface within the City's boundaries, contributes runoff to the City's stormwater system; that all utility customers having impervious surface areas make use of or benefit from the City's maintenance, operation and improvement of the stormwater system; and that all such stormwater customers should contribute to the funding of the City's program for maintenance, operation and improvement of the stormwater system; and

WHEREAS, professional financial and engineering consultants and the City's Public Works Director have worked cooperatively in evaluating methods for stormwater management and options for funding the program. Based on these assessments, recommendations from the Committee to the City Council were made and accepted;

#### SCAPPOOSE ORDINANCE - DRAFT

#### THE CITY OF SCAPPOOSE DOES ORDAIN AS FOLLOWS:

Section 1. Purpose. The City finds and declares that absent effective maintenance, operation, regulation and control, existing stormwater drainage conditions in all drainage basins and subbasins within the City constitute a potential hazard to the health, safety and general welfare of the City. The City Council further finds that natural and man-made stormwater facilities and conveyances together constitute a stormwater system and that effective regulation and control of stormwater through formation, by the City, of a Stormwater Utility requires the transfer to the Utility of all stormwater facilities and conveyances and related rights belonging to the City.

<u>Section 2.</u> Incurred charge imposed. All customers of the City's Water Utility and those persons otherwise responsible for impervious surfaces within the City which contribute runoff to the common stormwater problem or who otherwise use or benefit from the Stormwater Utility of the City will be responsible for paying the Stormwater Utility fee as structured and applied through the Stormwater Utility Rate Resolution.

Section 3. Stormwater Management Utility created. There is hereby created and established pursuant to Oregon Revised Statute and Article XI, section 11b of the Oregon Constitution, a Stormwater Utility and incurred charge rate structure. All references to "the Utility" in this chapter refer to the Stormwater Management Utility. The Utility will have regulatory authority and responsibility for planning, design, construction, maintenance, administration and operation of all City stormwater conveyances and facilities.

Section 4. Property transferred to Utility. Title and all other incidents of ownership of the following assets are hereby transferred to and vested in the Stormwater Management Utility: all properties, interests and physical and intangible rights of every nature owned or held by the City, however acquired, insofar as they relate to or concern stormwater, further including, without limitation, all properties, interests, and rights acquired by adverse possession or by prescription, directly or through another, in and to the drainage or storage, or both, of stormwater, through, under, into or over lands, watercourses, drywells, pipes, channels, detention/retention facilities, sloughs, streams, ponds, lakes, and swamps, all beginning in each instance at a point where stormwater first enter the system of the City and ending in each instance at a point where the stormwater exits from the system of the City, and in width to the full extent of inundation caused by storm or flood conditions.

Section 5. Utility administered by the City's Public Works Director. The Stormwater Management Utility shall be administered by the City's Public Works Director.

Section 6. Annual report to Stormwater Utility customers. The City's Public Works Department shall cause to be completed an annual report on the Stormwater Management Utility which shall be approved by the City Council. This report shall summarize the financial activities of the Utility and the major areas of expenditure, field activities, accomplishments and the upcoming year's priorities.

# SCAPPOOSE ORDINANCE - DRAFT

<u>Section 7</u>. Severability. If any section, sentence, clause or phrase of this ordinance should be held to be invalid or unconstitutional by a court of competent jurisdiction, such invalidity or unconstitutionality shall not affect the validity or constitutionality of any other section, sentence, clause or phrase of this ordinance.

<u>Section 8.</u> Effective date. This ordinance shall take effect and be in force five (5) days after its passage, approval and publication as provided by law.

Read for the first time _____, 1998, and moved to second reading by ______ vote of the City Council.

Read the second time and adopted by the City Council ______, 1998.

Signed by the Mayor _____, 1998.

Mayor

ATTEST:

City Recorder

**City Attorney** 

annea an ann a sein has restanting which areas in the new share in the second restance with second with a second with a second with the second

(a) "Research to the charge structure formulation and providend and delivers to the same relation of the same by "Research to the same fathers," Plant, summing and by a first range showing the same in the father from research interaction to the same fathers.

Page 3

# **RESOLUTION NO.** _

# A RESOLUTION OF THE CITY OF SCAPPOOSE PERTAINING TO A SYSTEM AND STRUCTURE FOR STORMWATER RATES; CLASSIFYING THE FEES IMPOSED BY THIS RESOLUTION AS NOT SUBJECT TO ARTICLE XI, SECTION 11B OF THE OREGON CONSTITUTION.

Whereas, the Scappoose Municipal Code Chapter ____ provides that fees for stormwater management services be established by resolution of the City Council; and

Whereas, the City Council established a Stormwater Management Utility as provided by Scappoose Municipal Code Chapter ____;

Whereas, City Council finds that stormwater runoff within the basins and subbasins of Scappoose has caused property damage and erosion; carries concentrations of nutrients, heavy metals, oil, toxic materials into receiving waters and groundwater; degrades the integrity of City streets and the transportation system; reduces citizen access to emergency services and poses hazards to both lives and property;

Whereas, current and pending state and federal regulations mandate the control of pollution contained within stormwater runoff and that these regulations require comprehensive stormwater plans including provisions for the long term regulation of nonpoint source pollution management measures;

Whereas, future rates and charges may be fixed with consideration for the difference in cost of service to the various customers based on such factors as: the location of the various customers within the City; the intensity of development of an area; the types of surfaces; the difference in cost of maintenance, operation, repair, and improvement of the various parts of the Utility; the different character of the service furnished various customers; the quantity and quality of the runoff generated; and other matters which present a reasonable basis for distinction;

Whereas, the City Council finds that all Water Utility customers and other persons having responsibility for impervious surface area cause, by virtue of their impervious area, a change in the quantity, quality and timing of the stormwater leaving such area and reaching the stormwater system owned, operated and maintained by the Stormwater Management Utility;

WHEREAS, the City's Engineering Consultants has prepared and delivered to the City Council a "Storm Drain System Master Plan" recommending a funding structure for the City's Stormwater Management Utility;

NOW, THEREFORE, BE IT RESOLVED by the City Council of the City of Scappoose that:

Section 1. EFFECTIVE DATE: To be effective commencing with the billings prepared on or after _____ 1998.

Section 2. DEFINITIONS: The terms used in this resolution shall be defined as follows:

a. "City". The City of Scappoose, a municipality, and its authorized employees.

b. "City Council". The city council of Scappoose.

c. "Customer". A person in whose name service is rendered as evidenced by the signature on the application/contract for stormwater, sanitary sewer or water service or, in the absence of a signed instrument, by the receipt and payment of bills regularly issued in his/her/its name.

d. "Equivalent Service Unit (ESU)". A configuration of development or impervious surface estimated to contribute an amount of runoff to the City's stormwater system which is approximately equal to that created by the average developed single family residence within Scappoose. One ESU is equal to 2,750 square feet of impervious surface area.

e. "Impervious Surface". That hard surface area which either prevents or retards the entry of water into the soil mantle and/or causes water to runoff the surface in greater quantities or at an increased rate of flow from that present under natural conditions. Impervious surfaces may include, but are not limited to, rooftops, concrete or asphalt paving, walkways, patios, driveways, parking lots or storage areas, and oiled, macadam or other surfaces which similarly impede the natural infiltration or runoff of stormwater.

f. "Developed". An area which has been altered by grading or filling of the ground surface, or by construction of any improvement or other impervious surface area, which affects the hydraulic properties of the location.

g. "Single Family Residential". An area which is improved with a dwelling unit for occupancy by a single family or a similar group of people. A single family residence also may be an individual dwelling, mobile home, flat or unit in a multi-family building or portion thereof for occupancy as the home, residence or sleeping place for one or more persons, provided each such dwelling, mobile home, flat or unit has a separate billing identified within the City's utility billing system.

h. "Undeveloped". Any area which has not been altered by grading or filling of the ground surface, or by construction of any improvements or other impervious surface area, which affects the hydraulic properties of the location.

Section 3. SYSTEM OF FEES. There is hereby imposed a system of fees on customers within the City served by or to which is available for service the Utility established by this chapter.

The charges are found to be reasonable and necessary as a means for funding of stormwater management within the City. This program will fund the administration, planning, design, construction, water quality programming, operation, maintenance and repair of stormwater system, facilities, drywells, conveyances and program; provided, however, that the City reserves the right to fix, alter, regulate and control the charges. The following charges are hereby established for all customers in the City:

a. Single Family Residential: The single family residential charge shall be \$_.__ per month for each residential dwelling. This uniform rate is based on each single family residence being equal to one equivalent service unit (ESU).

b. Undeveloped: Undeveloped areas shall not be charged under this structure of charges.

c. Other Customers: The charge for all other customers shall be based upon the total amount of measured impervious surface divided by one ESU, and rounded to the nearest whole number. The actual total monthly service charge shall be computed by multiplying the measured ESU's for the area by the monthly rate of \$_.__ per ESU.

d. On-site Mitigation Reduction Factor: The Utility Administrator shall determine the appropriate on-site mitigation credit factor for those eligible customers who apply for such credit consideration and provided that such mitigation is done in a manner consistent with the design criteria adopted by the City and administrative procedure adopted by the Utility.

e. Certain Areas Exempted: The Utility shall apply its charge to all publicly owned impervious surfaces excepting streets within the public right of way as these areas are designed as part of the City's stormwater conveyance system.

f. Special Programs: Rate adjustments for special programs may be determined on a case by case basis. These adjustments will be executed through individual contracts that delineate the in kind contribution of the customer to the City's stormwater management program. Special Program adjustments will be approved by the Utility Administrator.

g. Low Income Fees: A reduced stormwater service charge of _____ per ESU shall be charged for individual stormwater system users qualifying under Chapter _____ of the Scappoose Municipal Code.

Section 4. BILLING AND COLLECTION: Stormwater Utility charges for each Utility customer within the City shall be computed on at least a bi-monthly basis. The amount to be billed shall be included on the existing utilities bill as a separate line item. A "stormwater only" billing will be sent to those customers who are not currently receiving a Utility billing upon receipt of written request for stormwater service. The City shall bill the occupier of the location being served by the Utility to the extent such billing is consistent with the City's water Utility billing system.

Section 5. PENALTIES FOR NONPAYMENT OF CHARGES: In the event that any person, firm or corporation shall tender as payment of water, sewer, or stormwater services an amount insufficient to pay in full all of the charges so billed, credit shall be given first to the stormwater charge, second to the charges for sanitary sewer service and lastly to the charges for water service. In the event that any Utility account shall become delinquent, water service may be terminated by the City and discontinued until all delinquent fees for the use of the stormwater system, sanitary sewer service and water service shall have been paid in full. The provisions for collection provided herein shall be in addition to any rights or remedies which the City may have under the laws of the State of Oregon. However, under no conditions, shall the Stormwater Management Utility fee become a lien against the customer's property.

Section 6. STORMWATER UTILITY ACCOUNT: All money collected through Stormwater Utility charges shall be deposited in the Stormwater Utility Account as established and maintained by the City's Finance Director.

Section 7. APPEAL OF CHARGES: Any customer making a timely payment of the City's total utilities bill who considers the City's stormwater water charge, as applied to their impervious surface area or who otherwise disagrees with the Utility's rate determination, may apply to the Utility Administrator, or his/her designee, for a service charge adjustment, stating in writing the grounds for such an adjustment. The Utility Administrator will review the case file and determine whether an adjustment to the charge is necessary to provide for reasonable and equitable application of the Utility service charge.

Appeals of decisions made by the Utility Administrator may be brought before the Citizen's Utility Advisory Committee who may direct the reevaluation of the appeal by the Utility Administrator. Any appeal under this chapter shall be filed with the Utility Administrator no later than twenty (20) days after initial billing. Any subsequent appeal to the City Council shall be filed with the City within twenty (20) days of the recorded decision of the Utility Administrator.

Section 8. CLASSIFICATION: The City Council determines that the fees imposed by this resolution are not taxes subject to the property tax limitations of Article XI, Section 11(b) of the Oregon Constitution.

Introduced and adopted by the City Council of Scappoose on ______.

ATTEST:

Mayor

APPROVED AS TO FORM:

City Recorder

City Attorney

Page 4

# Appendix J STORM DRAINAGE SYSTEM DEVELOPMENT CHARGE ORDINANCE AND RESOLUTION



Scappoose Storm Drain System Master Plan

# CITY OF SCAPPOOSE SDC ORDINANCE - DRAFT

#### SYSTEM DEVELOPMENT CHARGE ORDINANCE LANGUAGE

Section 1. Purpose. The purpose of this ordinance is to provide authorization for system development charges for capital improvements pursuant to ORS 223.297 - 223.314 for the purpose of creating a source of funding for existing system capacity and/or the installation, construction and extension of future capital improvements. These charges shall be collected either at the time of increased usage or at the time of permitting development of properties which increase the use of capital improvements and generate a need for those facilities.

Section 2. Scope. The system development charges imposed herein are separate from and in addition to any applicable tax, assessment, charge, or fee otherwise provided by law or imposed as a condition of development.

Definitions. For purposes of ordinance, the following definitions shall apply:

Capital Improvements. Facilities or assets used for:

- (a) Water supply, treatment and distribution;
- (b) Sewage and wastewater collection, transmission, treatment and disposal.
- (c) Drainage and flood control;
- (d) Transportation; or
- (e) Parks and recreation.

*Development.* Conducting a building or mining operation, making a physical change in the use or appearance of a structure or land, or creating or terminating a right of access.

*Improvement fee.* A fee for costs associated with capital improvements to be constructed after the date the fee is adopted pursuant to the provisions of this ordinance.

Land area. The area of a parcel of land as measured by projection of the parcel boundaries upon a horizontal plane with the exception of a portion of the parcel within a recorded right-of-way or easement subject to a servitude for a public street or scenic or preservation purpose.

*Owner*. The Owner(s) of record title or the purchaser(s) under a recorded sales agreement, and other persons having an interest of record in the described real property.

*Parcel of land.* A lot, parcel, block or other tract of land that is occupied or may be occupied by a structure or structures or other use, and includes the yards and other open spaces required under the zoning, subdivision, or other development ordinances.

Permittee. The person to whom a Building Permit, Development Permit, or Right-of-Way Access Permit is issued.

Qualified public improvement. A capital improvement that is:

- (a) Required as a condition of development approval;
- (b) Identified in the System Development Charge Fund Project Plan; and

(c) Not located on or continuous to a parcel of land that is the subject of the development approval.

## CITY OF SCAPPOOSE SDC ORDINANCE - DRAFT

*Reimbursement fee.* A fee for costs associated with capital improvements constructed or under construction on the date the fee is adopted pursuant to the provisions of this ordinance.

System development charge. A reimbursement fee, an improvement fee or a combination thereof assessed or collected at the time of increased usage of a capital improvement, at the time of issuance of a development permit or building permit, or at the time of connection to the capital improvement. "System development charge" does not include fees assessed or collected as part of a local improvement district or a charge in lieu of a local improvement district assessment, or the cost of complying with requirements or conditions imposed by a land use decision.

# Section 3. System Development Charge Imposed; Method for Establishment Created.

(a) Unless exempted pursuant to Section 8 herein, a systems development charge is hereby imposed upon all development within the city of Scappoose.

(b) Systems development charges shall be established and may be revised by resolution of the Scappoose City Council. The resolution shall set the amount of the charge, the type of permit to which the charge applies, and, if the charge applies to a geographic area smaller than the entire City, the geographic area subject to the charge.

#### Section 4. Methodology.

(a) The methodology used to establish the reimbursement fee shall consider the cost of the then-existing facilities, prior contributions by then-existing system users, the value of unused capacity, rate-making principles employed to finance publicity owned capital improvements, and other relevant factors identified by the City Council. The methodology shall promote the objective that future systems users shall contribute not more than an equitable share of the cost of then-existing facilities.

(b) The methodology used to establish the improvement fee shall consider the cost of projected capital improvements needed to increase the capacity of the systems to which the fee is related and other relevant factors identified by the City Council.

(c) The methodology used to establish the improvement fee or the reimbursement fee, or both, shall be adopted by resolution.

# Section 5. Authorized Expenditure.

(a) Reimbursement fees shall be applied only to capital improvements associated with the systems for which the fees are assessed, including expenditures relating to repayment of indebtedness.

(b) (1) Improvement fees shall be spent only on capacity increasing capital improvements, including expenditures relating to repayment of debt for such improvements. An increase in system capacity occurs if a capital improvement increases the level of performance or service provided by existing facilities or provides new facilities. The portion of the improvements funded by improvement fees must be related to demands created by projected development.

# CITY OF SCAPPOOSE SDC ORDINANCE - DRAFT

(2) A capital improvement being funded wholly or in part from revenues derived from the improvement fee shall be included in the Systems Development Charge Fund Project Plan adopted by the City.

(c) System development charge revenues may be expended on the direct costs of complying with the provisions of this ordinance, including the costs of developing system development charge methodologies and providing an annual accounting of system development charge funds.

# Section 6. Project Plan.

(a) The City Council shall adopt by resolution the Systems Development Charge Fund Project Plan. This Plan:

- Defines the amount of current or under construction capacity available for new development and the cost of the facilities comprising this capacity;
- (2) Lists the capital improvements that may be funded with improvement fee revenues; and
- (3) Lists the estimated cost and estimated time of construction of each improvement.

(b) In adopting this plan, the City Coucil may incorporate by reference all or a portion of any public facilities plan, master plan, capital improvements plan or similar plan that contains the information required by this section. The City Council may modify this project plan at any time through the adoption of an appropriate resolution.

# Section 7. Collection of Charge.

- (a) The systems development charge is payable upon issuance of:
  - (1) A building permit;
  - A development permit for development not requiring the issuance of a building permit;
  - (3) Approval to connect or increase the usage of the system or systems provided by the City; or
  - A right-of-way access permit.
- (b) The resolution which sets the amount of the charge shall designate the permit or systems to which the charge applies.

(c) If development is commenced or connection is made to the systems provided by the City without an appropriate permit, the system development charge is immediately payable upon the earliest date that a permit was required.

(d) The City Manager or his/her designee shall collect the applicable system development charge from the permittee or system user.

(e) The City Manager or his/her designee shall not issue such permit or allow connection or increased usage of the system(s) until the charge has been paid in full, unless an exemption is granted pursuant to Section 8.
#### CITY OF SCAPPOOSE SDC ORDINANCE - DRAFT

(f) All moneys collected through the system development charge shall be retained in a separate fund and segregated by type of system development charge and by reimbursement vs improvement fees.

#### Section 8. Exemptions.

(a) Structures and uses established and existing on or before the effective date of the resolution.

(b) Additions to single-family dwellings that do not constitute the addition of a dwelling unit, as defined by the City's building code are exempt from all portions of the system development charge.

(c) An alteration, addition replacement or change in use that does not increase the parcel's or structure's use of a capital improvement are exempt from all portions of the system development charge.

#### Section 9. Credits.

(a) A permittee is eligible for credit against the system development charge for constructing a qualified capital improvement. A qualified capital improvement means one that meets all of the following criteria:

- Is required as a condition of development approval by the City Council; and
- (2) Is identified in the adopted System Development Charge Fund Project Plan; and
- (3) (i) Is not located within or contiguous to the property or parcel that is subject to development approval; or
  - (ii) Is not located in whole or in part on, or contiguous to, property that is the subject of development approval and required to be built larger or with greater capacity than is necessary for the particular development project to which the improvement fee is related.
- (4) This credit shall be only for the improvement fee charged for the type of improvement being constructed. Credit under this section may be granted only for the cost of that portion of the improvement that exceeds the facility size or capacity needed to serve the development project.

(b) Applying the adopted methodology, the City may grant a credit against the improvement charge for capital facilities provided as part of the development that reduces the development's demand upon existing capital improvements or the need for further capital improvements or that would otherwise have to be constructed at City expense under the then existing City Council policies.

(c) When the construction of a qualified public improvement gives rise to a credit amount greater than the improvement fee that would otherwise be levied against the project receiving development approval, the excess credit may be applied against improvement fees that accrue in subsequent phases of the original development project.

## CITY OF SCAPPOOSE SDC ORDINANCE - DRAFT

(d) All credit requests must be in writing and filed with the City before the issuance of a building permit. Improvement acceptance shall be in accordance with the usual and customary practices, procedures and standards of the city of Scappoose. The amount of any credit shall be determined by the City and based upon the subject improvement construction contract documents, or other appropriate information, provided by the applicant for the credit. Upon a finding by the City that the contract amounts exceed prevailing market rate for a similar project, the credit shall be based upon market rates. The City shall provide the applicant with a credit on a form provided by the City. The credit shall state the actual dollar amount that may be applied against any system development charge imposed against the subject property. The applicant has the burden of demonstrating qualification for a credit.

(e) Credits shall be apportioned against the property which was subject to the requirements to construct an improvement eligible for credit. Unless otherwise requested, apportionment against lots or parcels constituting the property shall be proportionate to the anticipated public facility service requirements generated by the respective lots or parcels. Upon written application to the City, however, credits shall be reapportioned from any lot or parcel to any other lot or parcel within the confines of the property originally eligible for the credit. Reapportionment shall be noted on the original credit form retained by the City.

(f) Any credits are assignable; however, they shall apply only to that property subject to the original condition for land use approval upon which the credit is based or any partitioned or subdivided parcel or lots of such property to which the credit has been apportioned. Credits shall only apply against system development charges, are limited to the amount of the fee attributable to the development of the specific lot or parcel for which the credit is sought and shall not be a basis for any refund.

(g) Any credit request must be submitted before the issuance of a building permit. The applicant is responsible for presentation of any credit and no credit shall be considered after issuance of a building permit.

(h) Credits shall be used by the applicant within ten years of their issuance by the City.

### Section 10. Notification/Appeals.

(a) The City shall maintain a list of persons who have made a written request for notification prior to adoption or amendment of the system development charge methodology. These persons shall be so notified in writing of any such proposed changes at least 45 days prior to the first hearing to adopt or amend such methodology(ies). This methodology shall be available at least 30 days prior to the public hearing. No challenge to the system development charge methodology shall be accepted after 60 days following final adoption by the City Council.

# Section 11. Annual Accounting.

(a) The City shall provide an annual accounting for system development charges showing the total amount of system development charges collected for each system along with a list of projects funded in whole or in part through system development charges.

Memo		KCM
Date:	November 3, 1998	
To:		
c:	Central Files:	
From:	Gordon Munro	
Project No.:	2830078	
Subject:	Oregon City – South End Sewer	

### START UP -TRI CITY SERVICE DISTRICT RESPONSE

Ted Kyle called on November 3, 1998 and indicated that they would not be able to attend the start up meeting due to previous obligations. We spoke about the project and possible impacts on the Tri City Service District.

- The Willamette Interceptor is operated by the Tri City Service District to a certain point. He
  was not sure if the existing connection point at Second and Highway 99 is within their
  jurisdiction.
- The Willamette Interceptor is HDPE pipe, and he was unsure of the exact size (possibly 21"). There is a steep grade on the pipe, so he does not believe that capacity will be a problem. Modeling shows that there will be one or two places in the line that will start to back up during a five year storm event in the year 2010
- The City is projecting somewhere around 8 to 9 mgd from the South End Sewer. He
  indicated that sounded about right, but he would be double-checking this week with his
  consultant. He will get that updated modeling to Nancy at the City.
- There have been enough changes/additions to the pipe that it would be best to look inside the manholes rather than rely on as-builts. The Willamette Interceptor is built down the centerline of Highway 99 East.
- Have some concern that there has been corrosion in the manhole. If there is, then they
  would ask that it be repaired as part of this project.
- If a drop connection is needed at the manhole, they like outside drops. He does not think one will be required, as the manhole is shallow.

## DRAFT

#### **RESOLUTION NO.**

# A RESOLUTION OF THE CITY COUNCIL OF SCAPPOOSE, OREGON, ADOPTING A METHODOLOGY AND ESTABLISHING A FEE FOR ITS STORM DRAINAGE SYSTEM DEVELOPMENT CHARGE.

WHEREAS, Ordinance _____ of the City of Scappoose establishes system development charges pursuant to ORS 223.297-223.314; and

WHEREAS, the City has retained KCM, Inc. to review, analyze and make recommendations regarding the City's storm drainage capital improvement requirements and system development charges; and

WHEREAS, the City, working with KCM, Inc., has prepared a "Storm Drain System Master Plan" dated ______ 1998, which applies the City's methodology for storm drainage system development charges to the reimbursement portion of the fee; and

WHEREAS, the City has adopted the capital improvements contained in the KCM, Inc. "Storm Drain System Master Plan" which identifies the specific projects, their costs and estimated time of construction. These projects and their costs will constitute the basis for the City's system development charge improvement fee; and

WHEREAS, Ordinance ______ of the City of Scappoose imposes the reimbursement and improvement elements of system development charges on new development within the City's service area and provides that system development methodologies for both the reimbursement and improvement portions of the charge be adopted through resolution;

NOW, THEREFORE, BE IT RESOLVED that:

- SECTION 1: <u>Methodology</u>. The methodology contained in the "Storm Drain System Master Plan" (______ 1998) by KCM, Inc. is hereby adopted as the methodology for the City's storm drainage system development charge.
- SECTION 2: Charges Established.

Storm Drainage - The reimbursement and improvement elements of the City's system development charge are hereby established. The two charges shall be in the amount identified in the "Storm Drain System Master Plan," dated ______ 1998.

SECTION 3: <u>Permits</u>. The charges in this resolution shall be due and payable upon the issuance of a permit to connect to the City's storm drainage system or at the time of increased usage of the storm drainage system as established in Ordinance No. _____. SECTION 4: Project Plan. The City Council has adopted the "System Development Charge Funds Project Plan." The costs supporting development of the City's fee are limited to those projects contained in the Plan which make available existing capacity or add to the capacity of the City's water system or increase the system's level of performance in order to accommodate the impacts of new development on the City's water system.

SECTION 5: Effective Date. This resolution shall take effect on _____

THIS RESOLUTION ADOPTED BY THE CITY OF SCAPPOOSE CITY COUNCIL THIS _____ DAY OF _____ 1998.

# CITY OF SCAPPOOSE STEPS TOWARD EVALUATING EXISTING FACILITIES AND CAPITAL IMPROVEMENT LISTS FOR SDC ELIGIBILITY

# ORS 223

- Capital improvements means the facilities or assets used for storm drainage systems. This
  definition DOES NOT ALLOW costs for operation or routine maintenance of the
  improvements.
- The SDC improvement base for the SDC shall consider the cost of projected capital improvements needed to increase the capacity of the systems to which the fee is related.
- An increase in system capacity is established if a capital improvement increases the "level of performance or service" provided by existing facilities or provides new facilities.

#### Under the proposed approach, the following rules will be followed:

- 1. REPAIR COSTS ARE NOT TO BE INCLUDED*;
- REPLACEMENT COSTS WILL NOT BE INCLUDED UNLESS THE REPLACEMENT INCLUDES AN UPSIZING OF SYSTEM CAPACITY AND/OR THE LEVEL OF PERFORMANCE OF THE FACILITY IS INCREASED*;
- NEW REGULATORY COMPLIANCE FACILITY REQUIREMENTS FALL UNDER THE LEVEL OF PERFORMANCE DEFINITION AND SHOULD BE INCLUDED;
- COSTS WILL NOT BE INCLUDED WHICH BRING DEFICIENT SYSTEM UP TO ESTABLISHED DESIGN LEVELS.

GIVEN THE PROJECTS CONTAINED IN THE CIP THAT QUALIFY UNDER RULES 1-4, PLEASE ADDRESS THE FOLLOWING QUESTIONS:

- A. HOW MUCH, IF ANY, OF THE CAPITAL IMPROVEMENT WOULD BE NECESSARY IF NO NEW CONNECTIONS TO THE DRAINAGE SYSTEM WERE ANTICIPATED?
- B. HOW MUCH, IF ANY, OF THE CAPITAL IMPROVEMENT IS NECESSARY TO BRING AN EXISTING FACILITY UP TO EXISTING REGULATORY MANDATES?
- C. HOW MUCH, IF ANY, OF THE CAPITAL IMPROVEMENT IS NECESSARY TO UPGRADE AN EXISTING FACILITY TO MEET NEW REGULATORY MANDATES?
- * A PROPORTIONATE SHARE OF THESE COSTS MAY BE INCLUDED UNDER THE REIMBURSEMENT PORTION OF THE FEE TO THE EXTENT THAT COSTS MEET THE TEST OF NEW DEVELOPMENT PAYING NO MORE THAN AN EQUITABLE SHARE OF THE COST FOR EXISTING FACILITIES.